Magnetic anisotropy of R2T14B (R=rare earth and T=transition metals such as Fe and Co) and partly substituted derivatives thereof are studied over a range of temperatures. The salient features are axial anisotropy for Y2Fe14B versus planar anisotropy for Y2Co14B. Only R with negative second‐order Stevens’ factor (such as Nd) will show axial anisotropy contributions near room temperature. However, even in this case nonaxial contributions compete at cryogenic temperature, leading to a spin reorientation for R=Nd and Ho with TRs=140 and 62 K, respectively, for the Fe‐based compounds. The symbol R is used to amplify the point that the spin reorientation is primarily triggered by an internal competition of R in question. The origin of this anisotropy competition is further illuminated by studies on partly R substituted materials, such as (Nd1−xRx)2Fe14B. Several contributions to the complex situation are considered including: (a) different site contributions (4f, 4g), (b) different order crystal‐field terms, such as V02, V22, and V04 on 4f and 4g, (c) relative magnitude of exchange and crystal field, and (d) the trend for smaller R to preferentially occupy the 4f site. Another type of spin reorientation is observed when R and T sublattice anisotropies compete. An example is Er2Fe14B with TR‐Ts=326 K. More complex mixed cases are either observed or predicted.

1.
H. Oesterreicher, Proceedings of the Internat. Symp. Anisotropy and Coercivity, Dayton, 1984, edited by K. Strnat, Univ. Dayton, p. 601.
2.
J. F.
Herbst
,
J. J.
Croat
,
F. E.
Pinkerton
, and
W. B.
Yelon
,
Phys. Rev. B
29
,
4176
(
1984
).
3.
D.
Givord
,
H. S.
Li
, and
J. M.
Moreau
,
Solid State Commun.
50
,
497
(
1984
).
4.
M.
Sagawa
,
S.
Fujimura
,
N.
Togawa
,
H.
Yamamoto
, and
Y.
Matsura
,
J. Appl. Phys.
55
,
6
(
1984
).
5.
C. B.
Shoemaker
,
D. P.
Shoemaker
, and
F.
Fruchart
,
Acta Crystallogr. Sect. C
40
,
1665
(
1984
).
6.
H.
Boller
and
H.
Oesterreicher
,
J. Less‐Common Met.
103
,
65
(
1984
).
7.
H.
Oesterreicher
,
F.
Spada
, and
H. C.
Abache
,
Mater. Res. Bull.
19
,
1069
(
1984
).
8.
F.
Spada
,
H. C.
Abache
, and
H.
Oesterreicher
,
J. Less‐Common Met.
99
,
L21
(
1984
).
9.
D.
Givord
,
H. S.
Li
, and
R.
Perrier de la Bathie
,
Solid State Commun.
51
,
857
(
1984
).
10.
S.
Sinnema
,
R. J.
Radwanski
,
J. J. M.
Franse
,
D. B.
de Mooij
, and
K. H.
Buschow
,
J. Magn. Magn. Mater.
45
,
333
(
1984
).
11.
R.
Grossinger
,
P.
Orbitsch
,
X. K.
Sun
,
R.
Eibler
,
H. R.
Kirchmayr
, and
H.
Sassik
,
Mater. Lett.
2
,
539
(
1984
).
12.
N. C.
Koon
,
B. N.
Das
,
M.
Rubinstein
, and
J.
Tyson
,
J. Appl. Phys.
57
,
4091
(
1985
).
13.
H. C.
Abache
and
H.
Oesterreicher
,
J. Appl. Phys.
57
,
4112
(
1985
).
14.
E. B.
Boltich
and
W. E.
Wallace
,
Solid State Commun.
55
,
529
(
1985
).
15.
H.
Oesterreicher
,
Phys. Status Solidi
131
,
K123
(
1985
).
16.
C. Abache, Ph.D. thesis, University of California, San Diego (1986).
17.
J. M.
Cadogan
and
J. M. D.
Coey
,
Phys. Rev. B
30
,
7326
(
1984
).
18.
M. T.
Hutchings
,
Solid State Phys.
16
,
227
(
1966
).
19.
M.
Rosenberg
,
P.
Deppe
,
M.
Wojcik
, and
H.
Stadelmaier
,
J. Appl. Phys.
57
,
4124
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.