We compare the general Beran bounds on the effective electrical conductivity of a two‐phase composite to the bounds derived by Torquato for the specific model of spheres distributed throughout a matrix phase. For the case of impenetrable spheres, these bounds are shown to be identical and to depend on the microstructure through the sphere volume fraction φ2 and a three‐point parameter ζ2, which is an integral over a three‐point correlation function. We evaluate ζ2 exactly through third order in φ2 for distributions of impenetrable spheres. This expansion is compared to the analogous results of Felderhof and of Torquato and Lado, all of whom employed the superposition approximation for the three‐particle distribution function involved in ζ2. The results indicate that the exact ζ2 will be greater than the value calculated under the superposition approximation. For reasons of mathematical analogy, the results obtained here apply as well to the determination of the thermal conductivity, dielectric constant, and magnetic permeability of composite media and the diffusion coefficient of porous media.

1.
G. K.
Batchelor
,
Annu. Rev. Fluid Mech.
6
,
227
(
1974
).
2.
D. K.
Hale
,
J. Mater. Sci.
11
,
2105
(
1976
).
3.
R. Landauer, in Electrical Transport and Optical Properties of Inhomogeneous Media, edited by J. C. Garland and D. B. Tanner (A.I.P., New York, 1978).
4.
Z.
Hashin
,
J. Appl. Mech.
50
,
481
(
1983
).
5.
W. F.
Brown
,
J. Chem. Phys.
23
,
1514
(
1955
).
6.
S.
Torquato
,
J. Appl. Phys.
58
,
3790
(
1985
).
7.
Z.
Hashin
and
S.
Shtrikman
,
J. Appl. Phys.
23
,
779
(
1952
).
8.
J. C. Maxwell, Electricity and Magnetism (Clarendon, London, 1873).
9.
M.
Beran
,
Nuovo Cimento
38
,
771
(
1965
).
10.
S.
Torquato
,
J. Chem. Phys.
84
,
6345
(
1986
).
11.
D. A. G.
Bruggeman
,
Ann. Phys. (Leipzig)
24
,
636
(
1935
).
12.
S. Torquato and G. Stell, Microscopic Approach to Transport in Two‐Phase Random Media, CEAS report no. 352, 1980;
Lett. Appl. Eng. Sci.
23
,
375
(
1985
).
13.
G. W.
Milton
,
Phys. Rev. Lett.
46
,
542
(
1981
).
14.
S.
Torquato
and
G.
Stell
,
J. Chem. Phys.
77
,
2071
(
1982
).
15.
S.
Torquato
and
G.
Stell
,
J. Chem. Phys.
79
,
1505
(
1983
).
16.
S.
Torquato
and
G.
Stell
,
J. Chem. Phys.
82
,
980
(
1985
).
17.
F.
Lado
and
S.
Torquato
,
Phys. Rev. B
33
,
3370
(
1986
).
18.
B. U.
Felderhof
,
J. Phys. C
15
,
3943
(
1982
).
19.
B. U.
Felderhof
,
J. Phys. C
15
,
3953
(
1982
).
20.
S.
Torquato
and
F.
Lado
,
Phys. Rev. B
33
,
6248
(
1986
);
The values in Table I not found in this reference are from a private communication.
21.
J. G.
Kirkwood
,
J. Chem. Phys.
3
,
300
(
1953
).
22.
B. R. A.
Nijboer
and
L.
VanHove
,
Phys. Rev.
85
,
777
(
1952
).
23.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, New York, 1976).
24.
J. S.
Rowlinson
,
Mol. Phys.
6
,
517
(
1963
).
25.
M. J. D.
Powell
,
Mol. Phys.
7
,
591
(
1964
).
26.
J. C. R.
Turner
,
Chem. Eng. Sci.
31
,
487
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.