High‐dose silicon implants have been used to preamorphize the surface of single‐crystal silicon prior to the implantation of low‐energy BF2. The preamorphization results in shallow junction formation with minimal channeling of the boron, but high concentrations of electrically active defects are formed, leading to excessive reverse bias leakage currents. Measurements of leakage current and deep‐level defects indicated that two distinct types of electrically active defects were important: those associated with what are probably complexes or clusters of point defects located near the far end of the range of the implanted silicon, and those associated with extended defects (loops) at the edge of the regrown amorphous region. The former defects were deep‐level donors present in high concentrations (>1017 cm3) after regrowth of the amorphous layer at 600 or 700 °C and resulted in leakage currents >104 A/cm2. These centers could be annealed out at 800 °C reducing the leakage current to values between 5×108 and 2×105 A/cm2 depending upon the relative locations of the extended defects and the metallurgical junction. Measurements and modeling have shown that the location of the band of extended defects is critical in controlling the leakage current and that it will need to be a few hundred angstroms shallower than the junction itself for the associated generation current to be fully suppressed.

1.
J. M.
Shannon
,
Inst. Phys. Conf. Ser.
69
,
45
(
1984
).
2.
B. L. Crowder, J. F. Ziegler, and G. W. Cole, Ion Implantation in Semiconductors and Other Materials, edited by B. L. Crowder (Plenum, New York, 1973), p. 257.
3.
S. D.
Brotherton
,
P.
Bradley
, and
A.
Gill
,
Physica
129B
,
166
(
1985
).
4.
K.
Zdansky
and
N. T.
Thuc Hien
,
Phys. Status Solidi A
81
,
353
(
1984
).
5.
N. M.
Johnson
,
R. B.
Gold
, and
J. F.
Gibbons
,
Appl. Phys. Lett.
34
,
704
(
1979
).
6.
S. D.
Brotherton
,
Solid State Electron.
26
,
987
(
1983
).
7.
S. D.
Brotherton
,
J. Appl. Phys.
55
,
3636
(
1984
).
8.
J.
Narayan
and
O. W.
Holland
,
Appl. Phys. Lett.
41
,
239
(
1982
).
9.
B. Smith, Ion Implantation Range Data for Silicon and Germanium Device Technologies (Learned Information Ltd., Oxford, 1977).
10.
F. H.
Mullins
and
A.
Brunnschweiler
,
Solid State Electron.
19
,
47
(
1976
).
11.
J. M.
Shannon
,
Inst. Phys. Conf. Ser.
28
,
37
(
1976
).
12.
L. P.
Andersson
and
A. O.
Evwaraye
,
Vacuum
28
,
5
(
1978
).
13.
G.
Greeuw
and
J. F.
Verwey
,
Solid State Electron.
26
,
241
(
1983
).
14.
S.
Ashok
and
A.
Mogro‐Campero
,
IEEE Electron Device Lett.
EDL‐5
,
48
(
1984
).
15.
M.
Yoshizawa
,
M.
Miyake
, and
H.
Harada
,
J. Electrochem. Soc.
131
,
453
(
1984
).
16.
M. S.
Doghmane
,
D.
Barbier
, and
A.
Laugier
,
Mat. Res. Soc. Symp. Proc.
35
,
287
(
1985
).
17.
J.
Castaing
and
T.
Cass
,
Rev. Phys. Appl.
20
,
29
(
1985
).
18.
K.
Yamada
,
M.
Kashiwagi
, and
K.
Taniguchi
,
Jpn. J. Appl. Phys.
22‐1
,
157
(
1983
).
19.
HECTOR is an unpublished 2D device modeling program produced by P. A. Gough of Philips Research Labs, Redhill, England.
20.
T.
Sands
,
J.
Washburn
,
R.
Gronsky
,
W.
Maszara
,
D. K.
Sadana
, and
G. A.
Rozgonyi
,
Appl. Phys. Lett.
,
45
,
982
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.