The PbTe‐SnTe superlattice was expected to be a type‐II superlattice where the valence band edge of SnTe is higher than the conduction band edge of PbTe. To ascertain the type‐II structure, we prepared the PbTe‐SnTe superlattice by hot wall epitaxy, and performed its Hall measurement. Magnetic‐field‐dependent and relatively small Hall coefficients were obtained for the superlattices, which show coexistence of free electrons and holes in the superlattice. Hall coefficients of the superlattices increased with annealing time owing to the gradual disappearance of the coexistence. Diffusion of Sn was studied using x‐ray diffraction analysis.

1.
G. A.
Sai‐Halasz
,
L. L.
Chang
,
J. M.
Welter
,
C. A.
Chang
, and
L.
Esaki
,
Solid State Commun.
27
,
935
(
1978
).
2.
H.
Sakaki
,
L. L.
Chang
,
G. A.
Sai‐Halasz
,
C. A.
Chang
, and
L.
Esaki
,
Solid State Commun.
26
,
589
(
1978
).
3.
L. L.
Chang
,
N.
Kawai
,
G. A.
Sai‐Halasz
,
R.
Ludeke
, and
L.
Esaki
,
Appl. Phys. Lett.
35
,
939
(
1979
).
4.
J. O. Dimmock, Physics of Semimetals and Narrow Gap Semiconductors, edited by D. L. Carter and R. T. Bate (Pergamon, Oxford, 1971), p. 363.
5.
K. F. Cuff, M. R. Ellet, C. D. Kuglin, and L. R. Williams, Proceedings of the 7th International Conference on the Physics of Semiconductors, Dunod, Paris (1964), p. 677.
6.
K. Murase, S. Shimomura, S. Takaoka, A. Ishida, and H. Fujiyasu, in Proceedings of the International Conference on Superlattices, Microstructures, and Microdevices, Champaign‐Urbana, Illinois, August 13–16, 1984, edited by John D. Dow et al. (Academic, London, 1985), Vol. 1, No. 2, p. 177.
7.
J. C.
Garland
,
Phys. Rev.
185
,
1009
(
1969
).
8.
D. E.
Soule
,
Phys. Rev.
112
,
698
(
1958
).
9.
A.
Ishida
,
M.
Aoki
, and
H.
Fujiyasu
,
J. Appl. Phys.
58
,
797
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.