Three kinds of superlattices consisting of good lattice‐matched and ‐mismatched materials (Pb0.76Sn0.24Te‐PbSe0.10Te0.90, Pb0.76Sn0.24Te‐PbTe, and Pb0.76Sn0.24Te‐PbSe0.18Te0.82 superlattices) were prepared by a hot‐wall epitaxy and their high‐angle x‐ray diffractions were measured. Sn‐diffusion effects on the satellite structure are studied and it was found that Sn diffusion increases lattice distortion for lattice‐matched Pb0.76Sn0.24Te‐PbSe0.10Te0.90 superlattice and for lattice‐mismatched Pb0.76Sn0.24Te‐PbSe0.18Te0.82 superlattice, on the other hand, decreases it for Pb0.76Sn0.24Te‐PbTe superlattice. And it was also found that very large diffusion of Sn occurs during growth even when the substrate temperature is 250 °C.

1.
M.
Yoshikawa
,
K.
Shinohara
, and
R.
Ueda
,
Appl. Phys. Lett.
31
,
699
(
1977
).
2.
P. Norton, G. Knoll, and K. H. Bachem, International Conference on Molecular Beam Epitaxy, August 1–3, 1984, San Francisco, California.
3.
D. L. Partin, R. F. Majkowski, and D. E. Swets, International Conference on Molecular Beam Epitaxy, August 1–3, 1984, San Francisco, California.
4.
H.
Kinoshita
and
H.
Fujiyasu
,
J. Appl. Phys.
51
,
5845
(
1980
).
5.
H.
Clemens
,
E. J.
Fantner
, and
G.
Bauer
,
Rev. Sci. Instrum.
54
,
685
(
1983
).
6.
A. Ishida and H. Fujiyasu (unpublished).
7.
A.
Segmüller
and
A. E.
Blakeslee
,
J. Appl. Crystallogr.
6
,
19
(
1973
).
8.
A.
Segmüller
,
P.
Krishna
, and
L.
Esaki
,
J. Appl. Crystallogr.
10
,
1
(
1977
).
9.
R. F.
Bis
and
J. R.
Dixon
,
J. Appl. Phys.
40
,
1918
(
1969
).
10.
S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969), p. 80.
11.
C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971), p. 133.
12.
A. J.
Miller
,
G. A.
Saunders
, and
Y. K.
Yogurtcu
,
J. Phys. (Paris)
C14
,
1569
(
1981
).
13.
G.
Lippmann
,
P.
Kastner
, and
G.
Wanninger
,
Phys. Status Solidi (a)
6
,
K159
(
1971
).
This content is only available via PDF.
You do not currently have access to this content.