Rapidly degraded InGaAsP/InGaP double‐heterostructure lasers grown on (001)‐oriented GaAs substrates by liquid phase epitaxy have been investigated by photoluminescence topography and transmission electron microscopy. 〈100〉‐dark‐line defects and 〈110〉‐dark‐line defects are observed in the degraded region. The 〈100〉‐dark‐line defects correspond to interstitial type dislocation dipoles caused by recombination enhanced dislocation climb. Their origins are threading dislocations, V‐shaped dislocations, and dislocation networks. The 〈110〉‐dark‐line defects correspond to faulted dipoles extended from small faulted loops in the active layer, edge dipoles extended from threading dislocations, and glide dislocations. The velocities of the 〈100〉‐dark‐line defects are estimated by the operating time and the length of the dark lines, and are quite similar to those in rapidly degraded GaAlAs double‐heterostructure lasers.

1.
T.
Mizutani
and
H.
Watanabe
, GaAs and Related Compounds 1981,
Inst. Phys. Conf. Ser.
63
,
137
(
1982
).
2.
Zh. I.
Alferov
,
I. N.
Arsent’ev
,
D. Z.
Garbusov
, and
V. D.
Rumyantsev
,
Sov. Tech. Phys. Lett.
1
,
5
(
1975
).
3.
J. J.
Coleman
,
N.
Holonyak
, Jr.
, and
M. J.
Ludowise
,
Appl. Phys. Lett.
28
,
363
(
1976
).
4.
A.
Suzuki
,
K.
Kyuragi
,
S.
Matsumura
, and
H.
Matsunami
,
Jpn. J. Appl. Phys.
19
,
L207
(
1980
).
5.
S.
Mukai
,
Jpn. J. Appl. Phys.
21
,
1141
(
1982
).
6.
H.
Watanabe
and
A.
Usui
,
Jpn. J. Appl. Phys. Suppl.
22‐1
,
315
(
1983
).
7.
S.
Mukai
,
H.
Yajima
,
Y.
Mitsuhashi
,
J.
Shimada
, and
N.
Kutsuwada
,
Appl. Phys. Lett.
43
,
24
(
1983
).
8.
O. Ueda, S. Isozumi, S. Komiya, T. Kusunoki, and I. Umebu, Materials Research Society 1983 Annual Meeting, Boston, Symposium N, Electron Microscopy of Materials, N3.8.
9.
O.
Ueda
,
S.
Komiya
, and
S.
Isozumi
,
Jpn. J. Appl. Phys.
23
,
L394
(
1984
).
10.
L. C.
Kimerling
,
Solid State Electron.
21
,
1391
(
1978
).
11.
O.
Ueda
,
S.
Komiya
,
S.
Yamakoshi
,
I.
Umebu
, and
K.
Akita
,
Jpn. J. Appl. Phys. Suppl.
22‐1
,
243
(
1983
).
12.
O.
Ueda
,
I.
Umebu
, and
T.
Kotani
,
J. Crystal Growth
62
,
329
(
1983
).
13.
O.
Ueda
,
K.
Wakao
,
A.
Yamaguchi
,
S.
Komiya
,
S.
Isozumi
,
H.
Nishi
, and
I.
Umebu
,
Appl. Phys. Lett.
44
,
861
(
1984
).
14.
K.
Wakao
,
H.
Nishi
,
S.
Isozumi
,
S.
Ohsaka
,
T.
Kusunoki
, and
I.
Ushijima
,
Electron Lett.
20
,
374
(
1984
).
15.
P. M.
Petroff
and
R. L.
Hartman
,
Appl. Phys. Lett.
23
,
469
(
1973
).
16.
P. M.
Petroff
and
R. L.
Hartman
,
J. Appl. Phys.
45
,
3899
(
1974
).
17.
P. W.
Hutchinson
and
P. S.
Dobson
,
Philos. Mag.
32
,
745
(
1975
).
18.
O.
Ueda
,
S.
Isozumi
,
T.
Kotani
, and
T.
Yamaoka
,
J. Appl. Phys.
48
,
3950
(
1977
).
19.
O.
Ueda
,
S.
Isozumi
,
S.
Yamakoshi
, and
T.
Kotani
,
J. Appl. Phys.
50
,
765
(
1979
).
20.
S.
Komiya
,
T.
Tanahashi
,
K.
Akita
, and
T.
Kotani
,
Inst. Phys. Conf. Ser.
59
,
419
(
1981
).
21.
K.
Ishida
,
Y.
Matsumoto
, and
K.
Taguchi
,
Phys. Status Solidi (a)
70
,
277
(
1982
).
22.
H.
Imai
,
T.
Fujiwara
,
K.
Segi
,
M.
Takusagawa
, and
H.
Takanashi
,
Jpn. J. Appl. Phys.
18
,
589
(
1979
).
23.
R.
Ito
,
H.
Nakashima
,
S.
Kishino
, and
O.
Nakada
,
IEEE J. Quantum Electron.
QE‐11
,
551
(
1975
).
24.
M.
Fukuda
,
K.
Wakita
, and
G.
Iwane
,
J. Appl. Phys.
54
,
1246
(
1983
).
25.
K.
Ishida
,
T.
Kamejima
,
Y.
Matsumoto
, and
K.
Endo
,
Appl. Phys. Lett.
40
,
16
(
1982
).
26.
P. M.
Petroff
,
Semiconductors Insulators
5
,
307
(
1983
).
27.
R. D.
Gold
and
L. R.
Weisberg
,
Solid State Electron.
7
,
811
(
1964
).
28.
C. H.
Henry
and
D. V.
Lang
,
Phys. Rev. B
15
,
989
(
1977
).
29.
T.
Yamamoto
,
K.
Sakai
, and
S.
Akiba
,
IEEE J. Quantum Electron.
QE‐15
,
684
(
1979
).
30.
O.
Ueda
,
S.
Yamakoshi
,
S.
Komiya
,
K.
Akita
, and
T.
Yamaoka
,
Appl. Phys. Lett.
36
,
300
(
1980
).
31.
S.
Yamakoshi
,
M.
Abe
,
O.
Wada
,
S.
Komiya
, and
T.
Sakurai
,
IEEE J. Quantum Electron.
QE‐17
,
167
(
1981
).
32.
O.
Ueda
,
S.
Komiya
,
S.
Yamakoshi
, and
T.
Kotani
,
Jpn. J. Appl. Phys.
20
,
1201
(
1981
).
33.
C. L.
Zipfel
,
A. K.
Chin
, and
M. A.
DiGiuseppe
,
IEEE Trans. Electron Devices
,
ED‐30
,
310
(
1983
).
34.
D.
Laister
and
G. M.
Jenkins
,
Philos. Mag.
23
,
1077
(
1971
).
35.
P. W.
Hutchinson
and
P. S.
Dobson
,
Philos. Mag.
30
,
65
(
1974
).
36.
V. D.
Verner
,
S. K.
Maksimov
, and
D. K.
Nichugovskii
,
Phys. Status Solidi (a)
33
,
755
(
1976
).
37.
G. H.
Narayanan
and
A. H.
Kachare
,
Phys. Status Solidi (a)
26
,
657
(
1974
).
38.
T.
Kamejima
,
J.
Matsui
,
Y.
Seki
, and
H.
Watanabe
,
J. Appl. Phys.
50
,
3312
(
1979
).
39.
W. R.
Wagner
,
Inst. Phys. Conf. Ser.
33b
,
65
(
1978
).
40.
M. S.
Abrahams
,
J.
Blanc
, and
C. J.
Buiocchi
,
J. Appl. Phys.
45
,
3277
(
1974
).
41.
W. R.
Wagner
,
J. Appl. Phys.
49
,
173
(
1978
).
42.
T.
Kotani
,
O.
Ueda
,
K.
Akita
,
Y.
Nishitani
,
T.
Kusunoki
, and
O.
Ryuzan
,
J. Crystal Growth
38
,
85
(
1977
).
43.
S. Masui, M. Umeno, and H. Kawabe, unpublished.
44.
S. Masui, T. Nunojima, M. Umeno, and H. Kawabe, unpublished.
45.
M. S.
Abrahams
,
J.
Blanc
, and
C. J.
Buiocchi
,
Philos. Mag.
23
,
809
(
1971
).
46.
H.
Kressel
,
C. J.
Nuese
, and
G. H.
Olsen
,
J. Appl. Phys.
49
,
3140
(
1978
).
47.
T.
Kamejima
,
J.
Matsui
,
Y.
Seki
, and
H.
Watanabe
,
J. Appl. Phys.
50
,
3312
(
1979
).
48.
S.
O’Hara
,
P. W.
Hutchinson
, and
P. S.
Dobson
,
Appl. Phys. Lett.
30
,
368
(
1977
).
49.
P. W.
Hutchinson
,
P. S.
Dobson
,
S.
O’Hara
, and
D. H.
Newman
,
Appl. Phys. Lett.
26
,
250
(
1975
).
50.
P. M.
Petroff
,
W. D.
Johnston
, and
R. L.
Hartman
,
Appl. Phys. Lett.
25
,
226
(
1974
).
51.
S.
Kishino
,
N.
Chinone
,
H.
Nakashima
, and
R.
Ito
,
Appl. Phys. Lett.
29
,
488
(
1976
).
52.
T.
Kamejima
,
K.
Ishida
, and
J.
Matsui
,
Jpn. J. Appl. Phys.
16
,
233
(
1977
).
53.
B.
Monemoar
,
R. M.
Potemski
,
M. B.
Small
,
J. A.
Van Vechten
, and
G. R.
Woolhouse
,
Phys. Rev. Lett.
41
,
260
(
1978
).
54.
H.
Saito
and
T.
Kawakami
,
IEEE J. Quantum Electron.
QE‐13
,
564
(
1977
).
55.
P. W.
Hutchinson
,
P. S.
Dobson
,
B.
Wakefield
, and
S.
O’Hara
,
Solid State Electron.
21
,
1413
(
1978
).
56.
P. M.
Petroff
,
O. G.
Lorimor
, and
J. M.
Ralston
,
J. Appl. Phys.
47
,
1583
(
1976
).
57.
H.
Shade
,
C. J.
Nuese
, and
J. J.
Gannon
,
J. Appl. Phys.
42
,
5072
(
1971
).
58.
N.
Shimano
,
Y.
Kawai
, and
M.
Sakuma
,
J. Appl. Phys.
51
,
1227
(
1980
).
59.
N.
Shimano
,
J. Appl. Phys.
51
,
1818
(
1980
).
60.
S. Yamakoshi: InP light emitting diodes were fabricated and 50 diodes with threading dislocations inside the light emitting region were operated at a current density of 3 kA/cm2 and at 20 °C. In all diodes, the output power did not decrease after 5000 h of operation and no extended dark defects were observed in the light emitting region (unpublished).
61.
Y.
Nakano
and
K.
Wakita
,
Jpn. J. Appl. Phys.
18
,
127
(
1979
).
62.
O.
Ueda
,
S.
Yamakoshi
, and
T.
Yamaoka
,
Jpn. J. Appl. Phys.
19
,
L251
(
1980
).
63.
O.
Ueda
,
I.
Umebu
,
S.
Yamakoshi
, and
T.
Kotani
,
J. Appl. Phys.
53
,
2991
(
1982
).
64.
K.
Endo
,
S.
Matsumoto
,
H.
Kawano
,
I.
Sakuma
, and
T.
Kamejima
,
Appl. Phys. Lett.
40
,
921
(
1982
).
65.
P. M.
Petroff
and
L. C.
Kimerling
,
Appl. Phys. Lett.
29
,
461
(
1976
).
66.
S.
O’Hara
,
P. W.
Hutchinson
, and
P. S.
Dobson
,
Appl. Phys. Lett.
30
,
368
(
1977
).
67.
J. P.
Buisson
,
R. E.
Allen
, and
J. D.
Dow
,
J. Phys. (Paris)
43
,
181
(
1982
).
68.
J. D.
Dow
and
R. E.
Allen
,
Appl. Phys. Lett.
41
,
672
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.