A model which incorporates the influence of electrode surface conditions, gas pressure, and charging rate on the voltage stability of high energy spark gaps is discussed. Experimental results support several predictions of the model; namely, that increasing the pressure and the rate of voltage charging both produce a broadening of the self‐breakdown voltage distribution, whereas a narrow voltage distribution can be produced by supplying a copious source of electrons at the cathode surface. Experimental results also indicate that two different mechanisms can produce this broadening, both of which can be taken into account with the use of the model presented. Further implications of the model include changes in the width of the self‐breakdown voltage probability density function as the primary emission characteristics of the cathode are modified by, for example, oxide or nitride coatings and/or deposits from the insulator. Overall, the model provides a useful and physically sound framework from which the properties of spark gaps under a wide variety of experimental conditions may be evaluated.

1.
R. A. White, Proceedings of the 3rd IEEE International Pulsed Power Conference, Albuquerque, NM June, 1981, p. 359.
2.
L. B.
Gordon
,
M.
Kristiansen
,
M. O.
Hagler
,
H. C.
Kirbie
,
R. M.
Ness
,
L. L.
Hatfield
, and
J. N.
Marx
,
IEEE Trans. Plasma Sci.
PS‐10
,
286
(
1982
).
3.
E. I.
Zolotarev
,
V.
Mukhin
,
L. E.
Polyanskii
, and
V. N.
Trapeznikov
,
Sov. Phys. Tech. Phys.
21
,
340
(
1978
).
4.
Physics International Report PISR‐127‐4, Physics International Co., 2700 Merced Street, San Learndro, CA 94577 (July 1969).
5.
M. T. Buttram, Sandia National Lab Report, Sand 81‐1552 (1981).
6.
T. H. Martin, Air Force Pulsed Power Lecture Note No. 11, Plasma and Switching Laboratory, Department of Electrical Engineering, Texas Tech University (1983).
7.
V. A.
Avrutskii
,
Sov. Phys. Tech. Phys.
18
,
389
(
1973
).
8.
V. A.
Avrutskii
,
G. M.
Goncharenko
, and
E. N.
Prokharov
,
Sov. Phys. Tech. Phys.
18
,
386
(
1973
).
9.
R. M. Ness, Masters Thesis, Texas Tech University (August 1983).
10.
R. V. Hodges, R. C. McCalley, and J. F. Riley, Lockheed Missiles and Space Company Report, LMSC‐D811978 (1982).
11.
R. V. Hodges and J. F. Riley, Lockheed Missiles and Space Company Report, LMSC‐D877208 (1983).
12.
A.
Pedersen
,
IEEE Trans. Power Apparat. Syst.
PAS‐94
,
1749
(
1975
).
13.
S.
Berger
,
IEEE Trans. Power Apparat. Syst.
PAS‐95
,
1073
(
1976
).
14.
W. S.
Boyle
and
P.
Kisliuk
,
Phys. Rev.
97
,
255
(
1955
).
15.
R. V. Hodges, R. N. Vamey, and J. F. Riley (Phys. Rev. A in press). [This paper calculates P*, the probability of electrical breakdown as a function of the applied voltage υ as the probability of an infinite avalanche sequence plus the probability of a finite sequence that achieves a critical size. This result can be incorporated into the present paper by letting λ(υ)→λ(υ) = P*(υ)λ(υ) beginning with Eq. (8) below].
16.
M. W. Watts, Proceedings of the 5th International Conference on Gas Discharge, University of Liverpool, 11–14 Sept. 1978 (IEEE, London, 1978), p. 297.
17.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London
199
,
173
(
1928
).
18.
W. B. Davenport, Jr. and W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw‐Hill, New York, 1958), pp. 113–117.
19.
W. B. Davenport, Jr. and W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw‐Hill, New York, 1958), pp. 32–34.
20.
M. O. Hagler, A. L. Donaldson, and R. M. Ness, Texas Tech University Pulsed Power Lab Notes, TTU‐EEPP‐83‐1 (1983).
21.
A. L.
Donaldson
,
M. O.
Hagler
,
M.
Kristiansen
,
G.
Jackson
, and
L.
Hatfield
,
IEEE Trans. Plasma Sci.
PS‐12
,
28
(
1984
).
22.
R. C. Pfaffenberger and J. H. Patterson, Statistical Methods for Business and Economics (Irwin, Homewood, IL, 1977), p. 685.
23.
T.
Nitta
,
N.
Yamada
, and
Y.
Fujiwara
,
IEEE Trans. Power Apparat. Syst.
PAS‐93
,
623
(
1974
).
24.
S.
Berger
,
IEEE Trans. Power Apparat. Syst.
PAS‐96
,
1179
(
1977
).
25.
C. M.
Cooke
,
IEEE Trans. Power Apparat. Syst.
PAS‐94
,
1518
(
1975
).
26.
I. W.
McAllister
,
Elektrotechn. Z. A
99
,
283
(
1978
).
27.
S. J.
Levinson
and
E. E.
Kunhardt
,
IEEE Trans. Plasma Sci.
PS‐10
,
266
(
1982
).
28.
T. Martin, Sandia National Labs (private communication) (October 1983).
29.
V. I.
Krizhanovskii
,
A. I.
Kuz’michev
,
G. V.
Levchenko
,
R. B.
Luban
, and
A. I.
Shendakov
,
Sov. Phys. Tech. Phys.
26
,
1204
(
1981
).
30.
T. J.
Lewis
,
J. Appl. Phys.
26
,
1405
(
1955
).
31.
J.
Jones
,
J. Phys. D
1
,
769
(
1968
).
32.
Y. Tzeng and E. E. Kunhardt, 36th Gaseous Electronics Conference (Abstracts), State University of New York, 11–14 Oct. 1983, p. 42.
33.
J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering (Wiley, New York, 1965), p. 76.
34.
J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering (Wiley, New York, 1965), pp. 129–132.
35.
J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering (Wiley, New York, 1965), pp. 135–143.
36.
L. H.
Fisher
,
Phys. Rev.
72
,
423
(
1947
).
37.
P.
Narbut
,
E.
Berg
,
C. N.
Workes
, and
T. W.
Dakin
,
AIEE Trans.
78
,
545
(
1959
).
38.
J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering (Wiley, New York, 1965), pp. 68–69.
39.
J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering (Wiley, New York, 1965), p. 72.
40.
J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering (Wiley, New York, 1965), p. 77.
This content is only available via PDF.
You do not currently have access to this content.