Reproducible acoustic emission (AE) signals can be observed when a spherical diamond indenter is used to generate cone‐ or ring‐shaped Hertzian cracks on the surface of a glass specimen. The signals which are emitted during the loading of the specimen have features virtually indentical to those resulting when a glass capillary is broken on the surface of the specimen. This paper describes the first clear identification of Hertzian cracks which act as point sources of acoustic emission with features corresponding to a vertical force. The temporal characteristics of the force correspond to a Heaviside function with risetime less than 0.1 μs and an amplitude ranging from 1.8×103 to 4.2×103 N. The unloading of the diamond indenter from the glass also produces characteristic AE signals. These are distinguishable from the loading signals and they are shown to correspond to the development of unloading cracks on the surface of the specimen. Quantitative information about the unloading cracks is obtained from the AE signals by measuring the amplitude of the first pressure or P wave of the unloading signals. It is shown that this feature is directly related to the maximum applied load attained prior to unloading. A load threshold is found below which no unloading signals are detected.

1.
J. Spanner, Acoustic Emission: Techniques and Applications (Intex, Evanston, Illinois, 1974), Chap. 3.
2.
N. N. Hsu and S. C. Hardy, in Elastic Waves and Non‐destructive Testing of Materials, edited by Y. H. Pao (ASME, New York, 1978), AMD‐Vol. 29, pp. 85–106.
3.
Y. H. Pao, in Elastic Waves and Non‐destructive Testing of Materials, edited by Y. H. Pao (ASME, New York, 1978), AMD‐Vol. 29 pp. 107–128.
4.
F. R.
Breckenridge
,
C. E.
Tschiegg
, and
M.
Greenspan
,
J. Acoust. Soc. Am.
57
,
626
(
1975
).
5.
H.
Lamb
,
Philos. Trans. R. Soc. Ser. A
203
,
1
(
1904
).
6.
N. N.
Hsu
,
J. A.
Simmons
, and
S. C.
Hardy
,
Mater. Eval.
35
,
100
(
1977
).
7.
L.
Knopoff
,
J. Appl. Phys.
29
,
661
(
1958
).
8.
Y. H.
Pao
,
R.
Gajewski
, and
A. N.
Ceranoglu
,
J. Acoust. Soc. Am.
65
,
96
(
1979
).
9.
A. N.
Ceranoglu
and
Y. H.
Pao
,
Trans. ASME
48
,
125
(
1981
);
A. N.
Ceranoglu
and
Y. H.
Pao
,
48
,
133
(
1981
);
A. N.
Ceranoglu
and
Y. H.
Pao
,
48
,
139
(
1981
).
10.
R. L.
Weaver
and
Y. H.
Pao
,
J. Appl. Mech.
49
,
821
(
1982
).
11.
J. A. Simmons and R. B. Clough, in International Conference on Dislocation Modeling of Physical Systems, edited by J. Hirth and M. Ashby (Pergamon, New York, 1981), pp. 464–467.
12.
C. B.
Scruby
,
R. J.
Dewhurst
,
D. A.
Hutchins
, and
S. B.
Palmer
,
J. Appl. Phys.
51
,
6210
(
1980
).
13.
G. S.
Cargill
III
,
Phys. Today
34
,
27
(
1981
).
14.
D. Kishoni and W. Sachse, “Spark‐Generated Ultrasound,” MSC Report No. 4752, Materials Science Center, Cornell University, Ithaca, New York, June 1982.
15.
K. Y.
Kim
and
W.
Sachse
,
Appl. Phys. Letts.
43
,
1099
(
1983
).
16.
Y. Nakamura, C. L. Veach, and B. O. McCauley, in Acoustic Emission, STP 505 (American Society for Testing Materials, Philadelphia, 1972), STP 505, pp. 164–186.
17.
H. Nakasa, in Advances in Acoustic Emission, edited by H. L. Dunegan and W. H. Hartman (Dunhart, Knoxville, 1981), pp. 65–86.
18.
H. N. G.
Wadley
,
C. B.
Scruby
, and
G.
Shrimpton
,
Acta. Met.
29
,
399
(
1980
).
19.
R. B.
Clough
and
J. A.
Simmons
,
Mater. Eval.
39
,
1026
(
1981
).
20.
H. N. G. Wadley and C. B. Scruby, A. E. R. E. Report R10353, Metallurgy Division, AERE Harwell, December 1981.
21.
H.
Hertz
,
J. Reine Angew. Math.
92
,
156
(
1881
);
H.
Hertz
,
Verh. Ver. Befoerderung Gewerbe Fleisses
,
61
,
449
(
1882
), reprinted in English in Hertz’s Miscellaneous Papers (Macmillan, London, 1896), Chaps. 5 and 6.
22.
A. A.
Griffith
,
Philos. Trans. R. Soc. London Ser. A
221
,
163
(
1920
).
23.
F. C.
Roesler
,
Proc. Phys. Soc. B
69
,
981
(
1956
).
24.
F. C.
Frank
and
B. R.
Lawn
,
Proc. R. Soc. Ser. A
229
,
291
(
1967
).
25.
R. T.
Wilshaw
,
J. Phys. D
4
,
1567
(
1971
).
26.
B.
Lawn
and
R.
Wilshaw
,
J. Mater. Sci.
10
,
1049
(
1975
).
27.
S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw‐Hill, New York, 1970), pp. 409–414.
28.
M. T.
Huber
,
Ann. Phys.
14
,
153
(
1904
).
29.
N. F.
Mott
,
Engineering
165
,
16
(
1948
).
30.
D. K.
Roberts
and
A. A.
Wells
,
Engineering
24
,
820
(
1954
).
31.
R.
Burridge
and
L.
Knopoff
,
Bull. Seism. Soc. Am.
34
,
1875
(
1964
).
32.
K. Aki and P. G. Richards, Quantitative Seismology: Theory and Methods (Freeman, San Francisco, 1980) Vol. 1, Chap. 3.
33.
J.
Michaels
,
T.
Michaels
, and
W.
Sachse
,
Mater. Eval.
39
,
1032
(
1981
).
34.
W. Sachse and N. N. Hsu, in Physical Acoustics, edited by W. P. Mason and R. N. Thurston (Academic, New York, 1979), Vol. XIV, pp. 277–406.
35.
J. R.
Macdonald
,
Rev. Mod. Phys.
41
,
316
(
1969
).
36.
N. Soga, H. Yamanaka, and M. Kunugi, in High‐Pressure Science and Technology: Proceedings of the 6th Airapt Conference, edited by K. D. Timmerhaus and M. S. Barber (Plenum, New York, 1979), Vol. 2, pp. 200–206.
37.
K. L.
Johnson
,
J. J.
O’Connor
, and
A. C.
Woodward
,
Proc. R. Soc. London Ser. A
334
,
95
(
1973
).
38.
L. B.
Freund
,
Int. J. Sol. Struct.
14
,
241
(
1978
).
39.
K. L.
Johnson
,
J. Mech. Phys. Solids
18
,
115
(
1970
).
40.
C. M.
Perrott
,
Wear
45
,
293
(
1977
).
41.
K. Y. Kim and W. Sachse, “Characteristic Acoustic Emissions of Pennyshaped Cracks in Glass,” MSC Report No. 5136, Materials Science Center, Cornell University, Ithaca, New York, October 1983.
This content is only available via PDF.
You do not currently have access to this content.