The electrical characteristics and interdiffusion in electron‐beam evaporated Mo/GaAs0.6P0.4 Schottky barriers have been studied. The barrier height, ideality factor and deep trapping levels of these annealed or unannealed Mo/GaAs0.6P0.4 Schottky barriers are obtained by using the IV, CV, Rutherford backscattering spectroscopy (RBS), Auger electron spectroscopy (AES), and deep level transient spectroscopy (DLTS) analyses. A significant interdiffusion at the Mo/GaAs0.6P0.4 interface is demonstrated for 500 °C, 600 °C, annealed Schottky barriers. DLTS results show that there are two electron traps [Ec −(0.19±0.01) eV and Ec ‐(0.65±0.01) eV] and five hole traps [Ev +0.15 eV, Ev +(0.27±0.01) eV, Ev +(0.36±0.02) eV, Ev +(0.56±0.01) eV and Ev +0.84 eV] in existence at the metal‐semiconductor interface or in the bulk of the degraded Schottky barriers. These traps enhance the generation‐recombination effect and degrade the barrier height. RBS, AES, and DLTS results also indicate that the newly discovered hole trap Ev +0.84 eV, induced by Mo indiffusion, is believed to play a major role for Mo/GaAs0.6P0.4 Schottky barriers degradation.

1.
C. J. Tadd, J. D. Speight, G. W. B. Ashwell, and R. Heckingbottom, Electrochemical Society Spring Meeting, Toronto, 1975, Extended Abstracts, No. 119 (1975), p. 274.
2.
J.
Gyulai
,
J. W.
Mayer
,
V.
Redriquez
,
A. Y. C.
Yu
, and
H. J.
Gopen
,
J. Appl. Phys.
42
,
3578
(
1971
).
3.
A. K.
Sinha
and
J. M.
Poate
,
Appl. Phys. Lett.
23
,
666
(
1973
).
4.
G. Y.
Robinson
,
J. Vac. Sci. Technol.
13
,
884
(
1976
).
5.
C. C.
Chang
,
S. P.
Murarka
,
V.
Kumar
, and
G.
Quintana
,
J. Appl. Phys.
46
,
4327
(
1975
).
6.
S.
Su
and
S. M.
Sze
,
IEEE Trans. Electron. Devices
ED‐20
,
541
(
1973
).
7.
S. M.
Mukherjce
,
D. V.
Morgan
,
M. J.
Howes
,
J. G.
Smith
, and
P.
Brook
,
J. Vac. Sci. Technol.
16
,
138
(
1979
).
8.
P. M.
Batev
,
M. D.
Ivanovitch
,
E. I.
Kafedjiiska
, and
S. S.
Simeonov
,
Int. J. Electron.
48
,
511
(
1980
).
9.
M. S. Lin, W. H. Su, J. C. Lou, and T. F. Lei, Jpn. J. Appl. Phys. (to be published).
10.
D. V.
Lang
,
J. Appl. Phys.
45
,
3023
(
1974
).
11.
S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley‐Interscience, New York, 1981), p. 245.
12.
D. V. Lang, Thermally Stimulated Relaxation in Solids, edited by P. Braulich (Springer, Berlin, 1979), Chap. 3, pp. 93–133.
13.
G. M.
Martin
,
A.
Mitonneau
,
D.
Pons
,
A.
Mircea
, and
D. W.
Woodard
,
J. Phys. C
13
,
3855
(
1982
).
14.
B. W.
Hakki
,
J. Appl. Phys.
42
,
4981
(
1971
).
15.
D. D.
Sell
and
H. C.
Casey
, Jr.
,
J. Appl. Phys.
45
,
800
(
1974
).
16.
D. V.
Lang
and
R. A.
Logan
,
J. Electron. Mater.
4
,
1053
(
1974
).
17.
D. V.
Lang
and
R. A.
Logan
,
Phys. Rev. Lett.
39
,
635
(
1977
).
18.
B. C.
Burkey
,
R. P.
Khosla
,
J. R.
Fischer
, and
D. L.
Losee
,
J. Appl. Phys.
47
,
1095
(
1976
).
19.
R. A.
Craven
and
D.
Finn
,
J. Appl. Phys.
50
,
6334
(
1979
).
20.
I. D.
Henning
and
H.
Thomas
,
Solid State Electron.
25
,
325
(
1982
).
21.
L.
Forbes
,
Solid State Electron.
18
,
635
(
1975
).
22.
S.
Metz
,
Appl. Phys. Lett.
30
,
296
(
1977
).
23.
S.
Metz
and
W.
Fritz
,
Solid State Electron.
20
,
603
(
1977
).
24.
C.
Lopez
,
A.
Garcia
,
F.
Garcia
, and
E.
Munoz
,
Solid State Electron.
22
,
81
(
1979
).
25.
F. D.
Rossi
,
D.
Meyerhofer
, and
R. V.
Jensen
,
J. Appl. Phys.
31
,
1105
(
1960
).
26.
H. W.
Allison
and
C. S.
Fuller
,
J. Appl. Phys.
36
,
2519
(
1965
).
27.
G.
Larrabee
and
J.
Osborne
,
J. Electrochem. Soc.
113
,
564
(
1966
).
28.
I. D.
Henning
and
H.
Thomas
,
J. Electron. Mater.
10
,
361
(
1981
).
29.
A. A.
Bergh
,
IEEE Trans. Electron. Devices
ED‐18
,
166
(
1971
).
30.
A.
Bahraman
and
W. G.
Oldham
,
J. Appl. Phys.
43
,
2383
(
1972
).
This content is only available via PDF.
You do not currently have access to this content.