The elastic and viscoelastic stresses created during the oxidation of curved surfaces are calculated. The stress state and amplitude are shown to depend sensitively upon the oxidation site (interface or surface) and the oxidation strain (uniaxial or dilational). The viscoelastic stresses depend, in addition, on the rate of oxidation, vis‐a‐vis the viscosity of the oxide. In most cases, the stresses increase rapidly as the radius of curvature of the surface decreases. The influence of the stresses on several important oxidation phenomena are discussed. Specifically, corner effects on the oxidation rate, cracking and spalling of the oxide, and plastic deformation of the substrates are briefly addressed.
REFERENCES
1.
T. E.
Mitchell
, D. A.
Voss
, and E. P.
Butler
, J. Mater. Sci.
17
, 1825
(1982
).2.
A. K.
Sinha
, H. J.
Levinstein
, and T. E.
Smith
, J. Appl. Phys.
49
, 2423
(1978
).3.
D. K.
Brown
, S. M.
Hu
, and J. M.
Morrissey
, J. Electrochem. Soc.
129
, 1084
(1982
).4.
R. B.
Marcus
and T. T.
Sheng
, J. Electrochem. Soc.
129
, 1278
(1982
).5.
6.
7.
M.
Jarosz
, L.
Kocsanyi
and J.
Giber
, Appl. Surf. Sci.
14
, 122
(1982
).8.
G. E. Mase, Schaum’s Outline Series: Theory and Problem of Continuum Mechanics (McGraw‐Hill, New York, 1970).
9.
10.
D. Chin, S. Y. Oh, S. M. Hu, R. W. Dutton and J. L. Moll (unpublished).
11.
12.
13.
S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw‐Hill, New York, 1951).
14.
15.
J. R.
Ligenza
and W. G.
Spitzer
, J. Phys. Chem. Solids
14
, 131
(1960
).16.
17.
W. A.
Pliskin
and R. P.
Gnall
, J. Electrochem. Soc.
111
, 872
(1964
).18.
N. H.
Nachtrieb
, H. A.
Resing
, and S. A.
Rice
, J. Chem. Phys.
31
, 135
(1959
).19.
A. G. Evans and J. W. Hutchinson, Int. J. Solids Structures (in press).
This content is only available via PDF.
© 1983 American Institute of Physics.
1983
American Institute of Physics
You do not currently have access to this content.