Infrared transmission spectra of a series of silicon dioxide (SiO2) films grown on silicon wafers from a HCl and O2 gas mixture at 850 °C, have been studied for film thicknesses down to 28 Å. The validity of Lambert‐Bouguer’s Law for such thin films has been confirmed, and the apparent absorption coefficient calculated for the absorption at 1065 cm−1 is in good agreement with previously published data for thicker, vapor‐deposited, and thermally grown films. A continuous shift of the absorption near 1065 cm−1 has been found, moving from an asymptotic limit maximum of ∼1070 cm−1 for thick films towards smaller wave numbers for thinner films. Various possibilities for the origin of this shift are discussed.

1.
W.
Kaiser
,
P. H.
Keck
, and
C. F.
Lange
,
Phys. Rev.
101
,
1264
(
1956
);
W.
Kaiser
and
P. H.
Keck
,
J. Appl. Phys.
28
,
882
(
1957
);
H. J.
Hrostowski
and
R. H.
Kaiser
,
J. Phys. Chem. Solids
9
,
214
(
1959
).
2.
J.
Wong
,
J. Electron. Mater.
5
,
113
(
1976
), and references therein;
W. A.
Pliskin
,
Thin Solid Films
2
,
1
(
1968
), and references therein.
3.
J. E.
Dial
,
R. E.
Gong
, and
J. N.
Fordemwalt
,
J. Electrochem. Soc.
115
,
327
(
1968
).
4.
W. A.
Pliskin
and
R. P.
Esch
,
Appl. Phys. Lett.
11
,
257
(
1967
).
5.
J.
Wong
,
J. Appl. Phys.
44
,
5629
(
1973
).
6.
See, for example,
J. F.
Wager
and
C. W.
Wilmsen
,
J. Appl. Phys.
50
,
879
(
1979
), and references therein;
S. T. Pantelides, editor, The Physics of SiO2 and its Interfaces (Pergamon, New York, 1978).
7.
R. C.
Newman
and
J. B.
Willis
,
J. Phys. Chem. Solids
26
,
373
(
1965
).
8.
J. A.
Baker
,
Solid‐State Electron.
13
,
1431
(
1970
).
9.
K.
Graaf
,
E.
Grallath
,
S.
Ades
,
G.
Goldbach
, and
G.
Tolag
,
Solid‐State Electron.
16
,
887
(
1973
).
10.
Y.
Endo
,
Y.
Yatsurugi
,
N.
Akiyama
, and
T.
Nozaki
,
Anal. Chem.
44
,
2258
(
1972
).
11.
T.
Smith
and
A. J.
Caplan
,
J. Appl. Phys.
43
,
2455
(
1972
).
12.
S. I.
Raider
,
R.
Flitsch
, and
J.
Palmer
,
J. Electrochem. Soc.
122
,
413
(
1975
).
13.
D. R.
Bosomworth
,
W.
Hayes
,
A. R. L.
Spray
, and
G. D.
Watkins
,
Proc. R. Soc. London Ser. A
317
,
133
(
1970
).
14.
S. O.
Sari
,
P.
Hollingsworth‐Smith
, and
H.
Oona
,
J. Phys. Chem. Solids
,
39
,
857
(
1978
).
15.
A. R.
Bean
and
R. C.
Newman
,
J. Phys. Chem. Solids
32
,
1211
(
1971
), and references therein.
16.
R. J.
Bell
,
N. F.
Bird
, and
P.
Dean
,
J. Phys. C
1
,
299
(
1968
).
17.
See, for example,
F.
Shimura
,
H.
Tsuya
, and
T.
Kawamura
,
Appl. Phys. Lett.
37
,
484
(
1980
), which uses a differential method with a float‐zone silicon reference sample.
18.
I. W.
Boyd
,
J. I. B.
Wilson
, and
J. L.
West
,
Thin Solid Films
83
,
L173
, (
1981
).
19.
W. J. Potts, Jr., Chemical Infrared Spectroscopy (Wiley, New York, 1963), Vol. I.
20.
I. E., 3.3×104 cm−1 as calculated from Ref. 3.
21.
W. A.
Pliskin
and
H. S.
Lehman
,
J. Electrochem. Soc.
112
,
1013
(
1965
).
22.
S. W.
Chiang
,
Y. S.
Liu
, and
R. F.
Reihl
,
Appl. Phys. Lett.
39
,
752
(
1981
).
23.
Y. S.
Liu
,
S. W.
Chiang
, and
F.
Bacon
,
Appl. Phys. Lett.
38
,
1005
(
1981
).
24.
F.
Shimura
,
H.
Tsuya
, and
T.
Kawamura
,
Appl. Phys. Lett.
37
,
483
(
1980
).
25.
T.
Kubota
and
M.
Kamoshida
,
Jpn. J. Appl. Phys.
11
,
15
(
1972
).
26.
K.
Sato
,
J. Electrochem. Soc.
117
,
1065
(
1970
).
27.
W. J.
Potts
, Jr.
and
A. L.
Smith
,
Appl. Opt.
6
,
257
(
1967
).
28.
W. A.
Pliskin
and
H. S.
Lehman
,
J. Electrochem. Soc.
112
,
1013
(
1965
).
29.
G.
Hass
and
C. D.
Salzberg
,
J. Opt. Soc. Am.
44
,
181
(
1954
);
A.
Hjortsberg
and
C. G.
Granqvist
,
Appl. Opt.
19
,
1694
(
1980
).
30.
W. A.
Pliskin
,
P. D.
Davidse
,
H. S.
Lehman
, and
L. I.
Maissel
,
IBM J. Res. Dev.
11
,
461
(
1967
).
31.
Reference 25 and references within;
T. J.
Magee
,
C.
Leung
,
H.
Kawayoshi
,
B. K.
Furman
, and
C. A.
Evans
, Jr.
,
Appl. Phys. Lett.
39
,
631
(
1981
);
P. E.
Freeland
,
J. Electrochem. Soc.
127
,
754
(
1980
);
S. M.
Hu
,
J. Appl. Phys.
52
,
3974
(
1981
).
32.
H. R.
Phillip
,
J. Appl. Phys.
50
,
1053
(
1979
).
This content is only available via PDF.
You do not currently have access to this content.