A single‐threshold quantum‐utilizing device in which the excited carriers thermally equilibrate among themselves, but not with the environment, can convert solar energy with an efficiency approaching that of an infinite‐threshold device. Such a hot‐carrier flat‐plate device operated under typical terrestrial conditions (AM 1.5 illumination, 300 K) can convert solar energy with an efficiency of 66%, substantially exceeding the 33% maximum efficiency of a quantum device operating at thermal equilibrium, and the 52% maximum efficiency of an ideal thermal conversion device. This high efficiency is achieved in part through an unusual inversion, in which the chemical potential of the excited electronic band is below that of the ground band. This negative potential difference reduces radiation losses, permitting a low threshold energy, and a high Carnot efficiency resulting from a high carrier temperature.

1.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
2.
R. T.
Ross
and
T. L.
Hsiao
,
J. Appl. Phys.
48
,
4783
(
1977
).
3.
J. R.
Bolton
,
Science
202
,
705
(
1978
).
4.
R. T.
Ross
and
J. M.
Collins
,
J. Appl. Phys.
51
,
4504
(
1980
).
5.
D. S.
Boudreaux
,
F.
Williams
, and
A. J.
Nozik
,
J. Appl. Phys.
51
,
2158
(
1980
).
6.
A. J.
Nozik
,
D. S.
Boudreaux
,
R. R.
Chance
, and
F.
Williams
,
Adv. Chemistry Series
, Vol.
184
,
155
(
1980
).
7.
F.
Williams
and
A. J.
Nozik
,
Nature
271
,
137
(
1978
).
8.
J.
Shah
,
Solid‐State Electron.
21
,
43
(
1978
).
9.
D. K.
Ferry
,
Solid‐State Electron.
21
,
115
(
1978
).
10.
J.
Shah
and
R. C. C.
Leite
,
Phys. Rev. Lett.
22
,
1304
(
1969
).
11.
R. L.
Van Metter
and
R. S.
Knox
,
Chem. Phys.
12
,
333
(
1976
).
12.
R. T.
Ross
,
J. Chem. Phys.
46
,
4590
(
1967
).
13.
G.
Lasher
and
F.
Stern
,
Phys. Rev. A
133
,
553
(
1964
).
14.
M. Archer, in Photochemical Conversion and Storage of Solar Energy, edited by J. S. Connolly (Academic, New York, 1981), p. 333.
15.
For the theory of the infinite‐threshold device in terms of semiconductors, see
A.
deVos
,
J. Phys. D
13
,
839
(
1980
).
16.
“Terrestrial Photovoltaic Measurement Procedures,” NASA Report TM 73702, U.S. Energy Research and Development Administration Report ERDA/NASA/1022‐77‐16 (1977).
17.
J. R. Bolton, A. F. Haught, and R. T. Ross, in Photochemical Conversion and Storage of Solar Energy, edited by J. S. Connolly (Academic, New York, 1981), Chap. 11.
18.
L. H.
Shaffer
,
Sol. Energy
,
2
,
♯3–4
,
21
(
1958
).
19.
A. F. Haught, in Book of Abstracts, Third International Conference on Photochemical Conversion and Storage of Solar Energy, Boulder, Colorado, August, 1980, U.S. Department of Energy Publication SERI/TP‐623‐797, pp. 443–445 (1980).
20.
C. V.
Shank
,
E. P.
Ippen
, and
O.
Teschke
,
Chem. Phys. Lett.
45
,
291
(
1977
).
21.
C. V.
Shank
,
R. L.
Fork
,
R. F.
Leheny
, and
J.
Shah
,
Phys. Rev. Lett.
42
,
112
(
1979
).
22.
J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1975), pp. 294–301.
23.
E. Buhks, F. Williams, and A. J. Nozik (unpublished).
24.
R. T.
Ross
,
Appl. Phys. Lett.
35
,
707
(
1979
).
This content is only available via PDF.
You do not currently have access to this content.