Experiments and theoretical analysis have been performed to investigate the thermal and mechanical coupling of pulsed 0.35‐μm laser radiation (τp≊10−6 s) to aluminum targets irradiated in vacuum. Thermal coupling coefficients measured for Al 2024 (as‐received and polished) and pure aluminum, and impulse coupling data for polished Al 2024 are presented. We find low fluence (≲5.0 J/cm2) thermal coupling coefficients of 0.4 for as‐received Al 2024, 0.2 for polished or laser‐cleaned Al 2024, and 0.1 for pure aluminum. Neglecting initial surface layer effects, impulse coupling is shown to result from bulk target vaporization for pulse fluences greater than 10 J/cm2. Measurements are also presented for the plasma formation threshold above aluminum targets irradiated in vacuum at 0.35 μm. An intensity threshold of 6×107 W/cm2 is indicated for a pulse duration of 0.5 μs. The impulse coupling and plasma ignition threshold data are shown to be in good agreement with theoretical model predictions.

1.
J. A.
Woodroffe
,
J.
Hsia
,
A.
Ballantyne
,
Appl. Phys. Lett.
36
,
14
(
1980
).
2.
C.
Duzy
,
J. A.
Woodroofe
,
J.
Hsia
, and
A.
Ballantyne
,
Appl. Phys. Lett.
37
,
542
(
1980
).
3.
D. I. Rosen, J. Mitteldorf, G. Kothandaraman, A. N. Pirri, and E. R. Pugh, Paper No. 80‐1321, AIAA 13th Fluid Plasma Dynamics Conference, Snowmass, Colorado, July 1980 (unpublished).
4.
C. T. Walters, Battelle Columbus Laboratories Report ♯BCL‐G7029, (1980).
5.
S.
Marcus
,
J. E.
Lowder
, and
D. L.
Mooney
,
J. Appl. Phys.
47
,
2966
(
1976
).
6.
A. N.
Pirri
,
R. G.
Root
, and
P. K. S.
Wu
,
AIAA J.
16
,
1296
(
1978
).
7.
C. T.
Walters
,
R. H.
Barnes
, and
R. E.
Beverly
III
,
J. Appl. Phys.
49
,
2937
(
1978
).
8.
J. A.
McKay
,
R. D.
Bleach
,
D. J.
Nagel
,
J. T.
Schriemp
,
R. B.
Hall
,
C. R.
Pond
, and
S. K.
Manlief
,
J. Appl. Phys.
50
,
3231
(
1979
).
9.
J. A.
McKay
,
J. T.
Schriempf
,
T. L.
Cronburg
,
J. E.
Eninger
, and
J. A.
Woodroffe
,
Appl. Phys. Lett.
36
,
125
(
1980
).
10.
W. E.
Maher
and
R. B.
Hall
,
J. Appl. Phys.
51
,
1338
(
1980
).
11.
H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, England, 1959).
12.
J. F.
Ready
,
J. Appl. Phys.
36
,
462
(
1965
).
13.
Earlier treatments of this regime have been performed. See, for example,
R. J.
Harrach
,
J. Appl. Phys.
48
,
2370
2383
(
1977
), wherein approximate analytical solutions are described.
14.
S. I.
Anisimov
,
JETP
27
,
182
(
1968
).
15.
C.
Knight
,
AIAA J.
17
,
519
(
1979
).
16.
Ta. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High‐Temperature Hydrodynamics Phenomena (Academic, New York, 1966), Vol. 1, p. 259.
17.
Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High‐Temperature Hydrodynamics Phenomena (Academic, New York, 1966), Vol. 1, p. 265.
18.
Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High‐Temperature Hydrodynamics Phenomena (Academic, New York, 1966), Vol. 1, p. 390.
19.
Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High‐Temperature Hydrodynamics Phenomena (Academic, New York, 1966), Vol. 1, p. 393.
20.
Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High‐Temperature Hydrodynamics Phenomena (Academic, New York, 1966), Vol. 1, p. 421.
21.
Thermophysical Properties of High‐Temperature Materials, edited by Y. S. Touloukian (Purdue University, 1967).
22.
Thermophysical Properties of Selected Aerospace Materials, edited by Y. S. Touloukian and C. Y. Ho (Purdue University, 1976), Part I.
23.
American Institute of Physics Handbook, edited by Dwight E. Gray (McGraw‐Hill, New York, 1963), 2nd edition.
This content is only available via PDF.
You do not currently have access to this content.