Unipolar space‐charge distribution ρ(t) drifting with constant ion mobility μ in gas under time and space dependent electric fields will evolve according to the unipolar charge drift formula [1/ρ(t)]−[1/ρ(t0)] = (μ/ε0)(tt0), neglecting diffusion effects. This general formula is especially useful as a starting point for approximate treatment of space‐charge effects, both in ion drift and diffusion experiments, and in electrical coronas. A first simple derivation of an equivalent of the Warburg cos5ϑ current‐density distribution for point‐to‐plane coronas is given, together with a formula for the maximum possible unipolar ion current (the unipolar saturation current) Is ≊2με0V2/d, for a given corona voltage V and point‐to‐plane distance d. It is demonstrated that corona currents in excess of this limit always involve free electron or bipolar conduction phenomena, like streamers.

1.
G. Buchet and M. Goldman, in Proceedings of the 9th International Conference on Phenomena in Ionized Gases (Bucharest, 1969), p. 291.
2.
E.
Warburg
,
Wied. Ann
67
,
69
(
1899
).
3.
E. Warburg, Handbuch der Physik (Springer, Beilin, 1927), Vol. 14, pp. 154–155.
4.
J. Dupuy and A. Goldman, Communication aux journées sur les interactions décharge‐surface (1974).
5.
Y.
Kondo
and
Y.
Miyoshi
,
Jpn. J. Appl. Phys.
17
,
643
(
1978
).
6.
A. Goldman, E. O. Selim, and R. T. Waters, in The 5th International Conference on Gas Discharges, IEE Conf. Publ. (London, 1978), No. 165, pp. 88–91.
7.
E. O. Selim and R. T. Waters, in Proceedings of the 3rd International Symposium on High Voltage Engineering (Milan, 1979), Paper 53.03;
E. O. Selim and R. T. Waters, in The 6th International Conference on Gas Discharges and their Applications, IEE Conf. Eubl. (London, 1980), No. 189, pp. 146–149.
8.
N.
Felici
,
Dir. Curr.
8
,
252
,
278
(
1963
).
9.
P.
Atten
,
Rev. Gén. de Electr.
83
,
143
(
1974
).
10.
W.
Deutsch
,
Ann. Phys. (Leipzig)
16
,
588
(
1933
).
11.
L. E.
Tsyrlin
,
Sov. Phys. Tech. Phys.
XXX
,
2439
(
1957
);
L. E.
Tsyrlin
,
XXX
,
1470
(
1958
).,
Sov. Phys. Tech. Phys.
12.
B. L.
Henson
,
J. Appl. Phys.
52
,
709
(
1981
).
13.
G. Canadas, P. Canadas, J. Dupuy, J. Genet, and J. Marsan, Proceedings of the 12th International Conference on Phenomena in Ionized Gases (Eindhoven, 1975), p. 202.
14.
P. Canadas, Docteur‐Ingénieur Thesis, Univ. de Toulouse, France, 1976.
15.
J. S.
Townsend
,
Philos. Mag.
28
,
83
(
1914
).
16.
J. J. Thomson and G. P. Thomson, Conduction of Electricity through Gases (Cambridge University, London, 1933), Vol. II, p. 552.
17.
R. S. Sigmond, in Electrical Breakdown of Gases, edited by J. M. Meek and J. D. Craggs (Wiley, New York, 1978), Chap. 4.
18.
R. T.
Waters
,
T. E. S.
Rickard
, and
W. B.
Stark
,
Proc. R. Soc. London Ser. A
315
,
1
(
1970
).
19.
R. Zentner, Docteur Ingénieur Thesis, Univ. Karlsruhe, 1969.
20.
R. T.
Waters
and
W. B.
Stark
,
J. Phys. D
8
,
416
(
1975
).
21.
M. N. Hirsh and M. Goldman, in Proceedings of the 13th International Conference on Phenomena in Ionized Gases, (Berlin, 1977), pp. 447–448.
22.
W. L.
Lama
and
C. F.
Gallo
,
J. Appl. Phys.
45
,
103
(
1974
).
23.
A. Goldman and M. N. Hirsh, in Gaseous Dielectrics II, edited by L. G. Christophorou (Pergamon, New York, 1980), pp. 43–52.
24.
M. Goldman and A. Goldman, in Gaseous Electronics, edited by M. N. Hirsh and H. J. Oskam (Academic, New York, 1978), Chap. 4.
25.
M. Goldman and R. S. Sigmond, in Proceedings of the 15th International Conference on Phenomena in Ionized Gases (Minsk, 1981), pp. 653–654.
26.
H. Korge, K. Kudu, and M. Laan, in The Third International Symposium on High Voltage Engineering (Milan, 1979), Paper 31.04.
27.
B. L.
Henson
,
J. Appl. Phys.
52
,
3921
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.