Many condensed matter systems, ranging from adsorbed surfaces to bulk magnets, are microscopically modelled by interacting q‐state Potts spins, arrayed in d dimensions. A changeover from second‐order phase transitions at q≤qc(d) to first‐order transitions at q≳qc can be understood as a condensation of effect vacancies, which are patches of local disorder favored by entropy. Accordingly, the renormalization‐group treatment of Potts models is within context of Potts‐lattice‐gas models, where critical and tricritical fixed points occur at low q, but merge and annihilate at qc. This picture has led to exact tricritical exponents in two dimensions. It is also consistent with recent experimental results on intercalated systems in three dimensions. Effective vacancies in pure Potts models have also been studied by Monte Carlo simulation. Their effective chemical potential can be controlled by a four‐point interaction, which proved useful in Monte Carlo renormalization‐group studies.

1.
R. B.
Potts
,
Proc. Camb. Philos. Soc.
48
,
106
(
1952
).
For a recent comprehensive review, see
F. Y.
Wu
,
Rev. Mod. Phys.
54
,
235
(
1982
).
2.
This permutation symmetry is a generalization of the time‐reversal (up‐down) symmetry of magnetic systems, to which it reduces for q = 2.
3.
B.
Barbara
,
M. F.
Rossignol
, and
P.
Bak
,
J. Phys. C
11
,
L183
(
1978
).
4.
S.
Alexander
,
Phys. Lett. A
54
,
353
(
1975
).
5.
A.
Aharony
,
K. A.
Müller
, and
W.
Berlinger
,
Phys. Rev. Lett.
38
,
33
(
1977
).
6.
P.
Bak
and
E.
Domany
,
Phys. Rev. B
20
,
2818
(
1979
).
7.
B. K.
Das
and
R. B.
Griffiths
,
J. Chem. Phys.
70
,
5555
(
1979
).
8.
C. M.
Fortuin
and
P. W.
Kasteleyn
,
J. Phys. Soc. Japan Suppl.
26
,
11
(
1969
).
9.
L. D.
Landau
,
Phys. Z. Sowjetunion
11
,
26
(
1937
),
reprinted in Collected Papers of L. D. Landau, edited by D. ter Haar (Pergamon, Oxford, 1965), p. 193;
L. D. Landau and E. M. Lifshitz, Statistical Physics, 2nd ed. (Pergamon, Oxford, 1969), Ch. XIV.
10.
R. J.
Baxter
,
J. Phys. C
6
,
L445
(
1973
).
11.
J. P.
Straley
and
M. E.
Fisher
,
J. Phys. A
6
,
1310
(
1973
).
12.
For a collection of reviews, see Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academic, New York, 1976), Vol. 6.
13.
B.
Nienhuis
,
A. N.
Berker
,
E. K.
Riedel
, and
M.
Schick
,
Phys. Rev. Lett.
43
,
737
(
1979
).
14.
A. N.
Berker
,
S.
Ostlund
, and
F. A.
Putnam
,
Phys. Rev. B
17
,
3650
(
1978
).
15.
B.
Nienhuis
,
E. K.
Riedel
, and
M.
Schick
,
J. Phys. A
13
,
L31
(
1980
);
T. W.
Burkhardt
,
Z. Phys. B
39
,
159
(
1980
).
16.
A. N.
Berker
,
D.
Andelman
, and
A.
Aharony
,
J. Phys. A
13
,
L413
(
1980
);
D.
Andelman
and
A. N.
Berker
,
J. Phys. A
14
,
L91
(
1981
).,
J. Phys. A
17.
B.
Nienhuis
,
E. K.
Riedel
, and
M.
Schick
,
Phys. Rev. B
23
,
6055
(
1981
).
18.
M. P. M.
den Nijs
,
J. Phys. A
12
,
1887
(
1979
).
19.
B.
Nienhuis
,
E. K.
Riedel
, and
M.
Schick
,
J. Phys. A
13
,
L189
(
1980
);
R. B.
Pearson
,
Phys. Rev. B
22
,
2579
(
1980
).
20.
J. L.
Black
and
V. J.
Emery
,
Phys. Rev. B
23
,
429
(
1980
);
B.
Nienhuis
,
J. Phys. A
15
,
199
(
1982
).
21.
R. H.
Swendsen
,
D.
Andelman
, and
A. N.
Berker
,
Phys. Rev. B
24
,
6732
(
1981
).
22.
R. H. Swendsen and A. N. Berker, to be published.
23.
R. H. Swendsen, preprints.
24.
D. S.
Robinson
and
M. B.
Salamon
,
Phys. Rev. Lett.
48
,
156
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.