The maximum efficiencies of ideal solar cells are calculated for both single and multiple energy gap cells using a standard air mass 1.5 terrestrial solar spectrum. The calculations of efficiency are made by a simple graphical method, which clearly exhibits the contributions of the various intrinsic losses. The maximum efficiency, at a concentration of 1 sun, is 31%. At a concentration of 1000 suns with the cell at 300 K, the maximum efficiencies are 37, 50, 56, and 72% for cells with 1, 2, 3, and 36 energy gaps, respectively. The value of 72% is less than the limit of 93% imposed by thermodynamics for the conversion of direct solar radiation into work. Ideal multiple energy gap solar cells fall below the thermodynamic limit because of emission of light from the forward‐biased pn junctions. The light is radiated at all angles and causes an entropy increase as well as an energy loss.

1.
M. B.
Prince
,
J. Appl. Phys.
26
,
534
(
1955
).
2.
J. J.
Loferski
,
J. Appl. Phys.
27
,
777
(
1956
).
3.
J. J.
Wysocki
and
P.
Rappaport
,
J. Appl. Phys.
31
,
571
(
1960
).
4.
M.
Wolf
,
Proc. IRE
48
,
1246
(
1960
).
5.
J. A.
Fossum
,
E. L.
Burgess
, and
F. A.
Lindholm
,
Solid State Electron.
21
,
729
(
1979
).
6.
H. J. Hovel, Semiconductor and Semimetah, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1975), Vol. 11.
7.
R. L. Moon, L. W. James, H. A. VanderPlas, T. O. Yep, G. A. Antypas, and Y. Chai, 13th IEEE Photovoltaic Specialists Conference, 1978, p. 859 (unpublished).
8.
G. M. Masden and C. E. Backers, Ref. 7, p. 853.
9.
A. Bennet and L. C. Olsen, Ref. 9, p. 868.
10.
L. M. Fraas and R. C. Knechtli, Ref. 7, p. 886.
11.
J. A. Cope, J. S. Harris, Jr., and R. Sahai, Ref. 7, p. 881.
12.
M. F. Lamorte and D. Abbot, Ref. 7, p. 874.
13.
H. A.
Muser
,
Z. Phys.
148
,
380
(
1957
).
14.
A. Rose, J. Appl. Phys. 31, 1640 ( +960).
15.
W.
Shockley
and
H. A.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
16.
R . T.
Ross
and
Ta‐Lee
Hsiao
,
J. Appl. Phys.
48
,
4783
(
1977
).
17.
Work in this field has been recently reviewed by R. S. Knox, [Proceedings of the Dahlim Workshop on Light‐induced Charge Separation at Interfaces in Biological and Chemical Systems, Berlin, 1978 (unpublished).
18.
ERDA/NASA Report 1022‐77/16 on terrestrial photovoltaic measurement procedures.
19.
D. M.
Gates
and
W. J.
Harrop
,
Appl. Opt.
2
,
887
(
1963
).
20.
>W. Shockley, Electrons and Holes in Semiconductors (Van Nostrand, New York, 1950), p. 464.
21.
L. D. Landau and E. M. Lifshitz, Statistical Physics, 2nd ed. (Addison‐Wesley, Reading, Mass., 1970), Sec. 54 on the nonequilibrium Bose gas.
22.
H. Bebb and E. W. Williams, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1972), Vol. 8, p. 206.
23.
R. T.
Ross
,
J. Chem. Phys.
46
,
4590
(
1967
).
24.
W. H.
Press
,
Nature
264
,
735
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.