Bounds on the effective elastic moduli of randomly oriented aggregates of hexagonal, trigonal, and tetragonal crystals are derived using the variational principles of Hashin and Shtrikman. The bounds are considerably narrower than the widely used Voigt and Reuss bounds. The Voigt‐Reuss‐Hill average lies within the Hashin‐Shtrikman bounds in nearly all cases. Previous bounds of Peselnick and Meister are shown to be special cases of the present results.

1.
W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928).
2.
A.
Reuss
,
Z. Angew. Math. Mech.
9
,
49
(
1929
).
3.
J. P.
Watt
,
G. F.
Davies
, and
R. J.
O’Connell
,
Rev. Geophys. Space Phys.
14
,
541
(
1976
).
4.
R.
Hill
,
Proc. Phys. Soc. London A
65
,
349
(
1952
).
5.
D. H.
Chung
,
Philos. Mag.
8
,
833
(
1963
).
6.
M.
Kumazawa
,
J. Geophys. Res.
74
,
5311
(
1969
).
7.
M. M.
Shukla
and
N. T.
Padial
,
Rev. Brasil. Fis.
3
,
39
(
1973
).
8.
Z.
Hashin
and
S.
Shtrikman
,
J. Mech. Phys. Solids
10
,
335
(
1962
).
9.
Z.
Hashin
and
S.
Shtrikman
,
J. Mech. Phys. Solids
10
,
343
(
1962
).
10.
L.
Peselnick
and
R.
Meister
,
J. Appl. Phys.
36
,
2879
(
1965
).
11.
R.
Meister
and
L.
Peselnick
,
J. Appl. Phys.
37
,
4121
(
1966
).
12.
J. P.
Watt
,
J. Appl. Phys.
50
,
6290
(
1979
).
13.
J. P.
Watt
, preceding paper,
J. Appl. Phys.
51
,
1520
(
1980
).
14.
F. Birch, in Handbook of Physical Constants, edited by S. P. Clark, Jr. (The Geological Society of America, New York, 1966).
15.
H. Jeffreys, Cartesian Tensors (Cambridge U.P., Cambridge, 1961), p. 70.
16.
E.
Kröner
,
Z. Phys.
151
,
504
(
1958
).
17.
M. D.
Volnyanskii
and
O. A.
Grzheyorzhevskii
,
Sov. Phys. Solid State
18
,
491
(
1976
).
18.
G. A.
Alers
and
J. R.
Neighbours
,
J. Phys. Chem. Solids
7
,
58
(
1958
).
19.
S.
Haussühl
,
Acustica
23
,
165
(
1970
).
This content is only available via PDF.
You do not currently have access to this content.