Bounds on the effective elastic moduli of randomly oriented aggregates of monoclinic crystals are derived using the variational principles of Hashin and Shtrikman. The bounds are considerably narrower than the widely used Voigt and Reuss bounds. The Voigt‐Reuss‐Hill average lies within the Hashin‐Shtrikman bounds in nearly all cases.

1.
Z.
Hashin
and
S.
Shtrikman
,
J. Mech. Phys. Solids
10
,
335
(
1962
).
2.
Z.
Hashin
and
S.
Shtrikman
,
J. Mech. Phys. Solids
10
,
343
(
1962
).
3.
L.
Peselnick
and
R.
Meister
,
J. Appl. Phys.
36
,
2879
(
1965
).
4.
R.
Meister
and
L.
Peselnick
,
J. Appl. Phys.
37
,
4121
(
1966
).
5.
J. P.
Watt
and
L.
Peselnick
,
J. Appl. Phys.
51
,
1525
(
1980
).
6.
J. P.
Watt
,
J. Appl. Phys.
50
,
6290
(
1979
).
7.
W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928).
8.
A.
Reuss
,
Z. Angew. Math. Mech.
9
,
49
(
1929
).
9.
J. P.
Watt
,
G. F.
Davies
, and
R. J.
O’Connell
,
Rev. Geophys. Space Phys.
14
,
541
(
1976
).
10.
R.
Hill
,
Proc. Phys. Soc. London A
65
,
349
(
1952
).
11.
D. H.
Chung
,
Philos. Mag.
8
,
833
(
1963
).
12.
F. Birch, in Handbook of Physical Constants, edited by S. P. Clark, Jr. (The Geological Society of America, New York, 1966).
13.
K. A.
Minaeva
,
E. V.
Baryshnikova
,
B. A.
Strukov
, and
V. M.
Varikash
,
Sov. Phys. Crystallogr.
23
,
361
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.