A time‐of‐flight atom‐probe field‐ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom‐probe without using high‐voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short‐duration voltage pulse, can be examined using pulsed‐laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well‐defined studies of surface chemical reactions. In addition to atom‐probe operation, pulsed‐laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed‐laser atom‐probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field‐ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7‐ns laser pulse are also presented.

1.
E. W.
Müller
,
J. A.
Panitz
, and
S. B.
McLane
, Jr.
,
Rev. Sci. Instrum.
39
,
83
(
1968
).
2.
S. S.
Brenner
and
J. T.
McKinney
,
Surf. Sci.
23
,
88
(
1970
).
3.
J. A.
Panitz
,
Rev. Sci. Instrum.
44
,
1043
(
1973
).
4.
T. T.
Tsong
,
Yee S.
Ng
, and
S. V.
Krishnaswamy
,
Appl. Phys. Lett.
32
,
778
(
1978
);
Yee S.
Ng
,
T. T.
Tsong
, and
S. B.
McLane
, Jr.
,
Phys. Rev. Lett.
42
,
588
(
1979
).
5.
J. A.
Panitz
,
J. Vac. Sci. Technol.
14
,
502
(
1977
).
6.
A.
Wagner
and
D. N.
Seidman
,
Phys. Rev. Lett.
42
,
515
(
1979
).
7.
G. L.
Kellogg
and
J. A.
Panitz
,
Appl. Surf. Sci.
3
,
13
(
1979
).
8.
See for example
S. S.
Brenner
,
Surf. Sci.
70
,
427
(
1978
).
9.
J. A. Panitz and A. J. Melmed (private communications).
10.
T. T. Tsong and Yee S. Ng (unpublished).
11.
S. V.
Kirshnaswamy
and
E. W.
Müller
,
Rev. Sci. Instrum.
45
,
1049
(
1974
).
12.
W. P.
Poshenrieder
,
Int. J. Mass Spectrom. Ion Phys.
9
,
357
(
1972
).
13.
E. W.
Müller
and
S. V.
Krishnaswamy
,
Rev. Sci. Instrum.
45
,
1053
(
1974
).
14.
T. T.
Tsong
,
J. H.
Block
,
M.
Nagasaka
, and
B.
Viswanathan
,
J. Chem. Phy.
65
,
2469
(
1976
).
15.
T. T.
Tsong
,
Surf. Sci.
70
,
211
(
1978
).
16.
Simultaneous to the progress of this work, W. Drachsel, S. Nishigaki, and J. H. Block of Fritz Haber Institute have reported obtaining photon‐induced field ionization mass spectra of Xe and organic molecules, achieving a mass resolution of M/ΔM = 100 in a drift distance of 30cm. [See Int. J. Mass Spectrom. Ion Phys. (in press)].
17.
See for example
E. W.
Müller
and
T. T.
Tsong
,
Prog. Surf. Sci.
4
,
1
(
1973
).
18.
S.
Nakamura
and
T.
Kuroda
,
Surf. Sci.
70
,
452
(
1978
).
19.
T. T.
Tsong
,
Yee S.
Ng
, and
A. J.
Melmed
,
Surf. Sci.
77
,
L187
(
1978
).
20.
Toshio
Sakurai
,
E. W.
Müller
,
R. J.
Culbertson
, and
A. J.
Melmed
,
Phys. Rev. Lett.
39
,
578
(
1977
).
21.
S. V.
Kirshnaswamy
and
E. W.
Müller
,
Z. Phys. Chem. Neue Folge
104
,
121
(
1977
).
22.
T. T.
Tsong
and
G. L.
Kellogg
,
Phys. Rev. B
12
,
1343
(
1975
).
23.
G. L. Kellogg (unpublished).
24.
See for example
G.
Ehrlich
,
Critical Rev. Solid State Sci.
4
,
205
(
1974
),
or
G. L.
Kellogg
,
T. T.
Tsong
, and
P. L.
Cowan
,
Surf. Sci.
70
,
485
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.