A CO chemical laser utilizing combustor‐generated CS and S is described. The combustor is fueled with NF3‐CH4‐H2‐CS2 and produces CS and S and the side products HF and N2. A common supersonic expansion mixing nozzle is used to extract the CS and S from the combustor and mix O2 and diluent (N2 or He) into the flow stream. A chain reaction between CS and O2 in the mixed flow stream, initiated by S atoms, produces vibrationally excited CO. The maximum power obtained from the laser was 700 W operating with He in a free expansion. Pressure and temperature measurements of the supersonic flow stream are compared with the results of a one‐dimensional fluid‐dynamics model, and the results of mass‐spectrometric sampling are presented. It is concluded that the power extraction efficiency could be greatly improved by operation of the laser with either a combustor fuel–oxidizer combination that does not produce HF or an improved supersonic mixing nozzle. Nevertheless, it has been demonstrated that the output power of this device scales with mass flowrate.

1.
W. Q.
Jeffers
and
C. E.
Wiswall
,
Appl. Phys. Lett.
17
,
67
(
1970
).
2.
C.
Wittig
,
J. C.
Hassler
, and
P. D.
Coleman
,
J. Chem. Phys.
55
,
5523
(
1971
).
3.
W. Q.
Jeffers
and
C. E.
Wiswall
,
Appl. Phys. Lett.
21
,
267
(
1972
).
4.
R. D.
Suart
,
P. H.
Dawson
, and
G. H.
Kimbell
,
J. Appl. Phys.
43
,
1022
(
1972
).
5.
W. Q.
Jeffers
and
C. E.
Wiswall
,
Appl. Phys. Lett.
23
,
626
(
1973
).
6.
C. J.
Ultee
and
P. A.
Bonczyk
,
IEEE J. Quantum Electron.
QE‐10
,
105
(
1974
).
7.
W. Q.
Jeffers
and
C. E.
Wiswall
,
IEEE J. Quantum Electron.
QE‐10
,
860
(
1974
).
8.
Reaction (1) actually has three branches; however, reaction (1) is dominant. See
I. R.
Slagle
,
J. R.
Gilbert
, and
D.
Gutman
,
J. Chem. Phys.
61
,
704
(
1974
).
9.
H. V.
Lilenfeld
and
R. J.
Richardson
,
J. Chem. Phys.
67
,
3991
(
1977
).
10.
For a discussion of the various measurements of this distribution, see
J. D.
Kelley
,
Chem. Phys. Lett.
41
,
7
(
1976
).
11.
R. J.
Richardson
and
C. E.
Wiswall
,
Appl. Phys. Lett.
33
,
296
(
1978
).
12.
W. Q.
Jeffers
,
C. E.
Wiswall
, and
H. Y.
Ageno
,
IEEE J. Quantum Electron.
QE‐12
,
639
(
1976
).
13.
R. J.
Richardson
,
J. Phys. Chem.
79
,
1153
(
1975
).
14.
W. Q.
Jeffers
,
C. E.
Wiswall
,
J. Daniel
Kelley
, and
R. J.
Richardson
,
Appl. Phys. Lett.
22
,
587
(
1973
).
15.
R. J.
Richardson
,
H. T.
Powell
, and
J. D.
Kelley
,
J. Phys. Chem.
77
,
2601
(
1973
).
16.
T. C.
Peng
,
J. Phys. Chem.
78
,
634
(
1974
).
17.
T. C.
Peng
and
H. V.
Lilenfeld
,
J. Phys. Chem.
79
,
2203
(
1975
).
18.
W. Q.
Jeffers
and
H. Y.
Ageno
,
Appl. Phys. Lett.
27
,
227
(
1975
).
19.
W. Q.
Jeffers
,
H. Y.
Ageno
, and
C. E.
Wiswall
,
J. Appl. Phys.
47
,
2515
(
1976
).
20.
V. R.
Buonadonna
and
R. J.
Richardson
,
AIAA J.
14
,
1106
(
1976
).
21.
R. J.
Richardson
and
V. R.
Buonadonna
,
J. Appl. Phys.
48
,
2509
(
1977
).
22.
D. R.
Cruise
,
J. Phys. Chem.
68
,
3797
(
1964
).
23.
A. G.
Gaydon
,
G. H.
Kimbell
, and
H. B.
Palmer
,
Proc. Soc. A
279
,
313
(
1970
).
24.
S. J.
Arnold
,
W. G.
Brownlee
, and
G. H.
Kimbell
,
J. Phys. Chem.
74
,
8
(
1970
).
25.
H. V.
Lilenfeld
,
R. F.
Webbink
,
W. Q.
Jeffers
, and
J. D.
Kelley
,
IEEE J. Quantum Electron.
QE‐11
,
660
(
1975
).
26.
H. V.
Lilenfeld
and
W. Q.
Jeffers
,
J. Appl. Phys.
47
,
2520
(
1976
).
27.
See, for example, J. Thoenes, A. J. McDanal, A. W. Ralliff, and S. D. Smith, Lockheed Technical Report RK‐CR‐74‐13 (1974).
28.
W. H.
Green
and
J. K.
Hancock
,
IEEE J. Quantum Electron.
QE‐9
,
50
(
1973
).
29.
J. D. Kelley (private communication).
30.
R. N.
Swartz
,
Z. I.
Slawsky
, and
K. F.
Herzfield
,
J. Chem. Phys.
20
,
1591
(
1952
).
For a review of vibrational relaxation theory and measurements, see
S.
Ormonde
,
Rev. Mod. Phys.
47
,
193
(
1975
).
31.
C. F.
Dewey
, Jr.
,
Int. J. Heat Mass Transfer
8
,
296
(
1965
).
32.
I. E.
Vas
,
AIAA J.
10
,
317
(
1972
).
33.
R. A. Akerman and J. Male, TRW Report No. 32633‐3006‐RV‐00 (1978).
34.
R. Dikerson and L. Forman, Rocketdyne Report No. RI/RD77‐254, (1978).
This content is only available via PDF.
You do not currently have access to this content.