Bounds on the effective elastic moduli of randomly oriented aggregates of orthorhombic crystals have been derived using the variational principles of Hashin and Shtrikman. The bounds are considerably narrower than the widely used Voigt bound and Reuss bound. In many instances, the separation between the new bounds is comparable to, or less than, the uncertainty introduced by experimental errors in the single‐crystal elastic stiffnesses. The Voigt‐Reuss‐Hill average lies within the Hashin‐Shtrikman bounds. several percent.

1.
W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928).
2.
A.
Reuss
,
Z. Angew. Math. Mech.
9
,
49
(
1929
).
3.
J. P.
Watt
,
G. F.
Davies
, and
R. J.
O’Connell
,
Rev. Geophys. Space Phys.
14
,
541
(
1976
).
4.
R.
Hill
,
Proc. Phys. Soc. London A
65
,
349
(
1952
).
5.
D. H.
Chung
,
Philos. Mag.
8
,
833
(
1963
).
6.
M.
Kumazawa
,
J. Geophys. Res.
74
,
5311
(
1969
).
7.
M. M.
Shukla
and
N. T.
Padial
,
Rev. Bras. Fis.
3
,
39
(
1973
).
8.
Z.
Hashin
and
S.
Shtrikman
,
J. Mech. Phys. Solids
10
,
335
(
1962
).
9.
Z.
Hashin
and
S.
Shtrikman
,
J. Mech. Phys. Solids
10
,
343
(
1962
).
10.
L.
Peselnick
and
R.
Meister
,
J. Appl. Phys.
36
,
2879
(
1965
).
11.
R.
Meister
and
L.
Peselnick
,
J. Appl. Phys.
37
,
4121
(
1966
).
12.
J. P. Watt and L. Peselnick (unpublished).
13.
E. K.
Graham
and
G. R.
Barsch
,
J. Geophys. Res.
74
,
5949
(
1969
).
14.
J. P. Watt (unpublished).
15.
F. Birch, in Handbook of Physical Constants, edited by S. P. Clark, Jr. (The Geological Society of America, New York, 1966).
16.
H. Jeffreys, Cartesian Tensors (Cambridge U.P., Cambridge, 1961), p. 70.
17.
E.
Kröner
,
Z. Phys.
151
,
504
(
1958
).
18.
S. D.
Phatak
,
R. C.
Srivastava
, and
E. C.
Subbarao
,
Acta Crystallogr. A
28
,
227
(
1972
).
This content is only available via PDF.
You do not currently have access to this content.