This paper presents an experimental study of the electrical conduction mechanisms in thick‐film (cermet) resistor. The resistors were made from one custom and three commercially formulated inks with sheet resistivities ranging from 102 to 106 Ω/⧠ in decade increments. Their microstructure and composition have been examined using optical and scanning electron microscopy, electron microprobe analysis, x‐ray diffraction, and various chemical analyses. This portion of our study shows that the resistors are heterogeneous mixtures of metallic metal oxide particles (∼4×10−5 cm in diameter) and a lead silicate glass. The metal oxide particles are ruthenium containing pyrochlores, and are joined to form a continuous three‐dimensional network of chain segments. The principal experimental work reported here is an extensive study of the electrical transport properties of the resistors. The temperature dependence of conductance has been measured from 1.2 to 400 K, and two features common to all resistors are found. There is a pronounced decrease in conductance at low temperatures and a shallow maximum at several hundred Kelvin. Within the same range of temperatures the reversible conductance as a function of electric field from 0 to 28 kV/cm has been studied. The resistors are non‐Ohmic at all temperatures, but particularly at cryogenic temperatures for low fields. At higher fields the conductance shows a linear variation with electric field. The thick‐film resistors are found to have a small dielectric constant and a (nearly) frequency‐independent conductance from dc to 50 MHz. The magnetoresistance to 100 kG, the Hall mobility, and the Seebeck coefficient of most of the resistors have been measured and discovered to be quite small. Many of the electrical transport properties have also been determined for the metal oxide particles which were extracted from the fired resistors. These results yielded a quantitative estimate of the metal oxide contribution to the total thick‐film resistance. Using the results of our measurements we examine four broad categories of conduction mechanism models which have been previously suggested in the literature: uniform, uniform channel, nontunneling barrier, and tunneling barrier models. The first three categories are systematically rejected because of disagreements with the data. A tunnel barrier model is then developed which incorporates two features not ordinarily considered in simple tunneling theory. The small metal oxide particle size is shown to cause a small activation energy associated with electrostatic charging of the particles. Also, impurities within the tunnel barriers are presumed to act as resonant centers which increase the barrier transmission coefficient. The model is compared in detail to our experimental results and shown to be in excellent agreement.

1.
Handbook of Thick Film Hybrid Microcircuits, edited by C. Harper (McGraw‐Hill, New York, 1974);
P. J. Holmes and R. G. Loasby, Handbook of Thick Film Technology (Electrochemical Pub. Ltd., Ayr, Scotland, 1976);
M. L. Topfer, Thick Film Microelectronics, Fabrication, Design and Applications (Van Nostrand Reinhold, New York, 1971).
2.
H. C.
Angus
and
P. E.
Gainsbury
,
Electron. Components
9
,
84
(
1968
).
3.
C. C.
Sartain
,
W. D.
Ryden
, and
A. W.
Lawson
,
J. Non‐Cryst. Solids
5
,
55
(
1970
);
C. C.
Sartain
,
J. Non‐Cryst. Solids
6
,
173
(
1971
).
4.
P. W. Polinski, Proceedings of the 1973 Electronic Components Conference, Washington, D.C., May 1973 (IEEE, New York, 1973), p. 153.
5.
L. J. Brady, Proceedings of the 1967 Electronic Components Conference, Washington, D.C., May 1967 (IEEE, New York, 1967), p. 238.
6.
Y.
Taketa
and
M.
Haradome
,
IEEE Trans. Parts Hybrids Packag.
PHP‐10
,
74
(
1974
).
7.
B.
Walton
,
Radio Electron. Eng.
45
,
139
(
1975
).
8.
P. F. Carcia, S. E. Champ, and R. B. Flippen, Proceedings of the 1976 Electronic Components Conference, San Francisco, May 1976 (IEEE, New York, 1976), p. 156;
P. F.
Carcia
and
R. M.
Rosenberg
,
Insul. Circuits
22
(No.
10
),
25
(
1976
).
9.
R. W. Vest, Purdue Research Foundation, Final Technical Report, ARPA Order No. 1642, 1975 (unpublished).
10.
G. E. Pike and C. H. Seager, Proceedings of the 1976 International Microelectronics Symposium, Vancouver, B.C., Canada, Oct. 1976 (ISHM, Montgomery, Ala., 1976), p. 213.
11.
F. Forlani and M. Prudenziati, Electrocomponents Sci Technol. (to be published);
M. Prudenziati and A. Cattaneo, Electrocomponents Sci. Technol. (to be published).
12.
Manufactured by E. I. DuPont de Nemours & Co., Inc., Photo Products Division, Wilmington, Del. 19898.
13.
Manufactured by Cermalloy, Union Hill Industrial Park, W. Conshohocken, Pa. 19428.
14.
The custom ink series was kindly provided by P. F. Carcia of E. I. DuPont de Nemours & Co., Inc.
15.
C. H. Seager and G. E. Pike, Sandia Technical Report SAND75‐0019, 1975 (unpublished).
16.
The etch composition is 25 ml of 52% HF, 10 ml of 70% HNO3, and 200 ml of H2O; this is diluted 1: 100 with H2O for C‐500 TFR’s.
17.
J. M.
Longo
,
P. M.
Raccah
, and
J. B.
Goodenough
,
Mater. Res. Bull.
4
,
191
(
1969
).
18.
M. V.
Coleman
,
Radio Electron. Eng.
45
,
121
(
1975
).
19.
P. W.
Polinski
,
Solid State Technol.
16
,
31
(
1973
); and private communication.
20.
R. J.
Bouchard
and
J. L.
Gillson
,
Mater. Res. Bull.
6
,
669
(
1971
).
21.
P. R.
Van Loan
,
Ceram. Bull.
51
,
231
(
1972
).
22.
K. R. Bube, Proceedings of the 1972 International Microelectronics Symposium, Washington, D.C., Oct. 1972 (ISHM, Park Ridge, III., 1972), p. 2A61.
23.
The polycrystalline Bi2Ru2O7 was kindly supplied by R. J. Bouchard of E. I. DuPont de Nemours & Co., Inc.
24.
C. H. Seager and G. E. Pike, Ref. 10, p. 115.
25.
C. H. Seager and G. E. Pike, Sandia Technical Report SAND76‐0536, 1976 (unpublished).
26.
B. L.
Blackford
,
Rev. Sci. Instrum.
42
,
1198
(
1971
).
27.
L. J.
van der Pauw
,
Philips Res. Rep.
13
,
1
(
1958
).
28.
C. H.
Seager
,
D.
Emin
, and
R. K.
Quinn
,
Phys. Rev. B
8
,
4746
(
1973
).
29.
S. M.
Sze
and
J. C.
Irvin
,
Solid‐State Electron.
11
,
599
(
1968
).
30.
V. I. Fistul’, Heavily Doped Semiconductors (Plenum, New York, 1969).
31.
Semiconductors, edited by N. B. Hannay (Reinhold, New York, 1959).
32.
R. D. Nasby and E. L. Burgess, Proc. 7th Intersociety Energy Conversion Engineering Conf., San Diego, CA, Sept. 1972 (ACS, Washington, D.C., 1972), p. 130.
33.
N. F. Mott and E. A. Davis, Electronic Processes in Non‐Crystalline Materials (Clarendon, Oxford, 1971).
34.
P. R.
Van Loan
,
J. Non‐Cryst. Solids
6
,
170
(
1971
).
35.
Introduction to Glass Science, edited by L. D. Pye, H. J. Stevens, and W. C. LaCourse (Plenum, New York, 1972);
Electrical Conductivity in Ceramics and Glasses, edited by N. M. Tallan (Marcel Dekker, New York, 1974).
36.
H. K. Henish, Rectifying Semiconductor Contacts (Clarendon, Oxford, 1957).
37.
S. M. Sze, Physics of Semiconductor Devices (Wiley‐Interscience, New York, 1969).
38.
W. D.
Kingery
,
J. Appl. Phys.
30
,
301
(
1959
).
39.
A. N. Prabbu, Ph.D. thesis (Purdue University, 1975) (unpublished).
40.
R.
Stratton
,
J. Phys. Chem. Solids
23
,
1177
(
1962
).
41.
C. B. Duke, in Tunneling Phenomena in Solids, edited by E. Burstein and S. Lundquist (Plenum, New York, 1969).
42.
W. R. Smyth, Static and Dynamic Electricity (McGraw‐Hill, New York, 1968).
43.
American Institute of Physics Handbook, 3rd ed., edited by D. E. Gray (McGraw‐Hill, New York, 1972), Chap. 5, p. 12.
44.
B. M.
Cohen
,
D. R.
Uhlmann
, and
R. R.
Shaw
,
J. Non‐Cryst. Solids
12
,
177
(
1973
).
45.
B.
Abeles
,
RCA Rev.
36
,
594
(
1975
).
46.
C. A.
Neugebauer
and
M. B.
Webb
,
J. Appl. Phys.
33
,
74
(
1962
).
47.
B.
Abeles
,
P.
Sheng
,
M. D.
Coutts
, and
Y.
Arie
,
Adv. Physics
24
,
407
(
1975
).
48.
H. R.
Zeller
and
I.
Giaever
,
Phys. Rev.
181
,
789
(
1969
).
49.
S. L. Erickson (unpublished).
50.
C. B.
Duke
,
G. G.
Kleiman
, and
T. E.
Stakelon
,
Phys. Rev. B
6
,
2389
(
1972
).
51.
S. W. Depp, Ph.D. thesis (University of Illinois, 1972) (unpublished).
52.
A. M.
Andrews
,
H. W.
Korb
,
N.
Holonyak
, Jr.
,
C. B.
Duke
, and
G. G.
Kleiman
,
Phys. Rev. B
5
,
2273
(
1972
).
53.
J. S.
Helman
and
F. S.
Sinencio
,
Appl. Phys. Lett.
28
,
34
(
1976
).
54.
G. L. Fuller, Ph.D. thesis (Purdue University, 1971) (unpublished); available from University Microfilms, Ann Arbor, Mich. (72–1863).
55.
T. E.
Hartman
and
J. S.
Chivian
,
Phys. Rev.
134
,
A1094
(
1964
).
56.
G. E. Pike and C. H. Seager, Sandia Technical Report SAND76‐0558, 1977) (unpublished).
57.
K.
Kipskis
,
A.
Sakalas
, and
J.
Viscakas
,
Phys. Status Solidi A
4
,
K217
(
1971
).
58.
M. H.
Cohen
and
J.
Jortner
,
Phys. Rev. Lett.
30
,
696
(
1973
).
59.
R. D.
Swenumson
and
J. C.
Thompson
,
Phys. Rev. B
14
,
5142
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.