The change in length of 1‐m‐long LiF single crystal has been determined as a function of hydrostatic pressure up to 7 kbar over the temperature range 28–41°C. The length change has been measured to an accuracy of less than 500 A by using a Fabry‐Perot type He‐Ne laser interferometer, and under a temperature‐controlled environment with temperature variations less than 0.002°C. Several isothermal equations of state, together with those derived from the Born model of ionic solids, have been used in analyzing the pressure‐volume data. The isothermal bulk modulus Bo and its pressure derivative Bo at atmospheric pressure and 28.83±0.05 °C obtained from the two‐parameter (Bo and Bo) equations of state are Bo=664.5±0.5 kbar and Bo=5.40±0.18, respectively. The present results differ considerably from the static measurements of Bridgman and also of Vaidya and Kennedy, but are in excellent agreement with the values obtained by ultrasonic measurements. Using the two‐parameter equations of state, the pressure volume data is extrapolated to ∼5 Mbar in order to compare with the shock wave data and to examine the differences between the various equations of state, which are hardly distinguishable in the low‐pressure region. Although the present V/Vo measurements are sufficiently accurate to obtain accurate values of Bo, the present pressure measurements are not (although we believe they are as accurate as is possible at the present time).

1.
Handbuch der Experimental Physik, edited by W. Wien and F. Harms (Academische Verlagsgesellschaft M.B.H., Leipzig, 1926–1937), Vol. 8, Part 2, pp. 224–228.
2.
J. R.
Macdonald
,
Rev. Mod. Phys.
38
,
669
(
1966
).
3.
J. R.
Macdonald
,
Rev. Mod. Phys.
41
,
316
(
1969
).
4.
J. R.
Macdonald
and
D. R.
Powell
,
J. Res. Natl. Bur. Stand. A
75
,
441
(
1971
).
5.
L. Knopoff, in High Pressure and Chemistry, edited by R. S. Bradley (Academic, New York, 1963), Vol. 1, pp. 227–263.
6.
F. D. Murnaghan, Finite Deformation of an Elastic Solid (Dover, New York, 1967).
7.
F.
Birch
,
Phys. Rev.
71
,
809
(
1947
).
8.
F.
Birch
,
J. Geophys. Res.
57
,
227
(
1952
).
9.
A.
Keane
,
Aust. J. Phys.
7
,
322
(
1954
).
10.
R.
Grover
,
I. C.
Getting
, and
G. C.
Kennedy
,
Phys. Rev.
7
,
B567
(
1973
).
11.
M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford U.P., London, 1954).
12.
M. P. Tosi, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1964), Vol. 16, pp. 1–120.
13.
O. L.
Anderson
,
Phys. Earth Planet. Inter.
1
,
169
(
1968
).
14.
G. R. Barsch and Z. P. Chang, in Accurate Characterization of the High Pressure Environment, NBS Special Publication 326 (U.S. GPO, Washington, D.C., 1971), p. 173.
15.
K. J.
Dunn
and
A. L.
Ruoff
,
Phys. Rev. B
10
,
2271
(
1974
).
16.
S. N.
Vaidya
and
G. C.
Kennedy
,
J. Phys. Chem. Solids
32
,
951
(
1971
).
17.
P. W.
Bridgman
,
Proc. Am. Acad. Arts Sci.
77
,
189
(
1949
).
18.
R. A.
Miller
and
C. S.
Smith
,
J. Phys. Chem. Solids
25
,
1279
(
1964
).
19.
S.
Haussühl
,
Z. Phys.
159
,
223
(
1960
).
20.
R. C.
Lincoln
and
A. L.
Ruoff
,
Rev. Sci. Instrum.
44
,
1239
(
1973
).
21.
K. Y.
Kim
,
R. E.
Terry
, and
A. L.
Ruoff
,
Rev. Sci. Instrum.
47
,
636
(
1976
).
22.
A. L.
Ruoff
,
R. C.
Lincoln
, and
Y. C.
Chen
,
J. Appl. Phys.
6
,
1295
(
1973
).
23.
A. L.
Ruoff
,
J. Appl. Phys.
38
,
4976
(
1967
).
24.
H.
Ebert
,
Phys. Z.
36
,
391
(
1935
).
25.
J.
Reitzel
,
I.
Zimon
, and
J. A.
Walker
,
Rev. Sci. Instrum.
28
,
828
(
1957
).
26.
M.
Pagannone
and
H. G.
Drickamer
,
J. Chem. Phys.
43
,
2266
(
1965
).
27.
R. H. Christian, University of California, Lawrence Radiation Laboratory, Report No. 4900, 1957 (unpublished).
28.
S. B.
Kormer
,
M. V.
Sinitsyn
,
A. I.
Funtikov
,
V. D.
Urlin
, and
A. V.
Blinov
,
Sov. Phys.‐JETP
20
,
811
(
1965
).
This content is only available via PDF.
You do not currently have access to this content.