The residual‐activity method was employed to evaluate the volume and grain‐boundary diffusion coefficients of mercury in the Ag3Sn alloy at temperatures ranging from 50 to 245 °C. The volume diffusion coefficient obeys the relationship Dv*=1.87×10−5 exp(−8.25×103/RT) cm2/sec. The grain‐boundary diffusion coefficient evaluated from Suzuoka’s exact solution varied from 10−3 cm2/sec at 50 °C to 10−1 cm2/sec at 245 °C. The large grain‐boundary‐diffusion coefficient was attributed to the increased grain‐boundary width of the alloy caused by the corrosive nature of the mercury.

1.
S. W. Freiman, M.S. thesis (Georgia Institute of Technology, 1965) (unpublished).
2.
M. L.
Malhotra
,
C. L.
Reynolds
, and
R. E.
Barker
,
J. Chem. Phys.
60
,
3831
(
1974
).
3.
C. L.
Reynolds
and
R. E.
Barker
,
J. Biomed. Mater. Res.
7
,
489
(
1973
).
4.
P. J. Shires, A. L. Hines, and T. Okabe, J. Biomed. Mater. Res. (to be published).
5.
T.
Okabe
,
F.
Ling
, and
R. F.
Hochman
,
J. Biomed. Mater. Res.
6
,
553
(
1972
).
6.
T.
Okabe
,
R. F.
Hochman
,
L. O.
Simes
,
J. Biomed. Mater. Res.
9
,
221
(
1975
).
7.
P. L.
Gruzin
,
Dokl. Akad. Nauk SSSR
86
,
289
(
1952
).
8.
T.
Okabe
,
R. F.
Hochman
, and
M. E.
McLain
,
J. Biomed. Mater. Res.
8
,
381
(
1974
).
9.
T.
Suzuoka
,
Trans. Jpn. Inst. Met.
2
,
25
(
1961
).
10.
R. H. Morgan and K. Corrigan, Handbook of Radiology (The Year Book Pub. Co., Chicago, 1955).
11.
W. Hume‐Rothery, Atomic Theory for Students of Metallurgy (Institute of Metals, London, 1962).
12.
A. A.
Kuliev
and
D. N.
Nasledov
,
Sov. Phys.‐Tech. Phys.
28
,
235
(
1958
).
13.
N. A. Gjostein, Diffusion (American Society for Metals, Cleveland, Ohio, 1972).
14.
J. C.
Fisher
,
J. Appl. Phys.
22
,
74
(
1951
).
15.
J. R.
Wilson
,
Metall. Rev.
10
,
381
(
1965
).
16.
R. D.
Calder
,
J. S.
Elleman
, and
K.
Verghess
,
J. Nucl. Mater.
46
,
46
(
1973
).
This content is only available via PDF.
You do not currently have access to this content.