Previous studies of gas diffusion in glass have suggested that the activation energy is a continuous function of temperature. Several models have been offered to explain this departure from the Arrhenius behavior commonly observed in diffusion studies. These models are compared with each other and with a new model which allows for the unique properties of vitreous materials. It is shown that this new model adequately describes the diffusion process.

1.
R. M. Barrer, Diffusion In and Through Solids (Cambridge U.P., New York, 1941).
2.
W. Jost, Diffusion in Solids, Liquids, and Gases (Academic, New York, 1952).
3.
J. E.
Shelby
,
J. Am. Ceram. Soc.
54
,
125
(
1971
).
4.
D. E.
Swets
,
R. W.
Lee
, and
R. C.
Frank
,
J. Chem. Phys.
34
,
17
(
1961
).
5.
W. M.
Jones
,
J. Am. Chem. Soc.
75
,
3093
(
1953
).
6.
E. K.
Beauchamp
and
L. C.
Walters
,
Glass Technol.
11
,
139
(
1970
).
7.
R. H. Doremus, Modern Aspects of the Vitreous State, Vol. 2 (Butterworth, Washington, D.C., 1962), p. 12.
8.
J. S. Masaryk and R. W. Fulrath, J. Chem. Phys. (to be published).
9.
J. Phalippon, S. Masson, A. Boyer, and J. Zargycki, III Rolla Ceramic Materials Conference, Baden‐Baden, West Germany, 1973 (unpublished).
10.
D. W.
Moore
and
D. E.
Day
,
Phys. Chem. Glasses
12
,
75
(
1971
).
11.
J. E.
Shelby
,
J. Am. Ceram. Soc.
55
,
61
(
1972
).
12.
J. E.
Shelby
,
Phys. Chem. Glasses
13
,
167
(
1972
).
13.
J. E.
Shelby
,
J. Am. Ceram. Soc.
55
,
195
(
1972
).
This content is only available via PDF.
You do not currently have access to this content.