A universal curve of energy‐dissipation range vs normalized electron energy is proposed, which includes the average atomic number Z of the material being bombarded in the energy normalization factor. Range‐energy expressions of the form R=kEBα, derived from the Bohr‐Bethe energy‐loss relation, are valid over limited energy ranges, but the exponent α differs for materials of greatly different atomic numbers over the same energy range. For the aluminum‐silicon dioxide‐silicon system used here, RG = 4.0 EB(keV)1.75 μg/cm2 has been found accurate for 5 <EB <25 keV. Using this value of range, and taking the steady‐state electron‐beam‐induced current through a thin insulating layer of SiO2 as a measure of the energy dissipation in that layer, an energy‐dissipation (depth‐dose) function has been determined which should be valid for 10 <Z <15. Using this normalized expression, λ(y) = 0.60 + 6.21y − 12.40y2 + 5.69y3 and the range RG, the energy dissipated at any depth may be determined, and hence the carrier‐pair generation in semiconductors, light generation in phosphors, etc., may be predicted. An expression relating the depth‐dose function to the applied voltage drop across the oxide provided an independent check on the experimental measurements and the assumptions used in reducing the data. The ratio of (mobility × lifetime) to the (mean electron excitation energy in the oxide) was found to be (μτ/EA) = (2.97 ± 0.06) × 10−13(cm/V)2 using the energy‐dissipation formulation, and (μτ/EA) = (3.00 ± 0.05) × 10−13(cm/V)2 using the check expression, where the errors quoted are root‐mean‐square deviations computed for 12 or more points.

1.
See, for example,
H.
Kanter
and
E. J.
Sternglass
,
Phys. Rev.
126
,
620
(
1962
).
2.
See, for example,
L.
Katz
and
A. S.
Penfold
,
Rev. Mod. Phys.
24
,
28
(
1952
).
3.
V. E.
Cosslett
and
R. N.
Thomas
,
Brit. J. Appl. Phys.
15
,
1283
(
1964
).
4.
B. E. Schumacher, in First International Conference on Electron and Ion Beam Science and Technology, edited by R. Bakish (Wiley, New York, 1965), pp. 5–70.
5.
H. E.
Bishop
,
Brit. J. Appl. Phys.
18
,
703
(
1967
).
6.
R.
Shimizu
and
K.
Murata
,
J. Appl. Phys.
42
,
387
(
1971
).
7.
L.
Reimer
,
Optik
27
,
86
(
1968
).
8.
D. B.
Wittry
and
D. K.
Kyser
,
J. Appl. Phys.
38
,
375
(
1967
).
9.
C. A.
Klein
,
Appl. Opt.
5
,
1922
(
1966
).
10.
A. E.
Gruen
,
Z. Naturforsch.
12A
,
89
(
1957
).
11.
T. E. Everhart, A. J. Gonzales, P. H. Hoff, and N. C. MacDonald, Electron Microscopy 1966, edited by R. Uyeda (Marazen, Tokyo, 1966), Vol. I, p. 201. See also P. H. Hoff and T. E. Everhart, in Record of the 10th Symposium on Electron, Ion, and Laser Beam Technology, edited by L. Marton (San Francisco Press, San Francisco, 1969), pp. 454–458.
12.
W.
Ehrenberg
and
B. E. N.
King
,
Proc. Phys. Soc. (London)
81
,
751
(
1963
).
13.
R. D. Birkhoff, in Handbuch der Physik, edited by E. Fluegge, (Springer, Berlin, 1958), Vol. 34, p. 53.
14.
Reference 13, Eqs. (7.10) and (8.1).
15.
C. J.
Bakker
and
E.
Segre
,
Phys. Rev.
81
,
489
(
1951
);
R.
Mather
and
E.
Segre
,
Phys. Rev.
84
,
191
(
1951
).
16.
M. J. Berger and S. M. Seltzer, Nat. Acad. Sci.‐Natl. Res. Council Publ. No. 1133 (1964), p. 205.
17.
A. Nelms, Natl. Bur. Std. (U.S.) Circular No. 577 (U.S. GPO, Washington, D.C., 1956).
18.
A. F.
Makhov
,
Fiz. Tverd. Tela
2
,
2161
(
1960
);
see also H. Drescher, L. Reimer, and H. Seide, Z. Angew. Phys. (to be published).
19.
P. C. R.
Palluel
,
Compt. Rend.
224
,
1492
(
1947
),
P. C. R.
Palluel
,
224
,
1551
(
1947
).,
Compt. Rend.
20.
V. E.
Cosslett
and
R. N.
Thomas
,
Brit. J. Appl. Phys.
16
,
779
(
1965
).
21.
E. J.
Sternglass
,
Phys. Rev.
95
,
345
(
1954
).
22.
H.
Kanter
,
Ann. Physik
20
,
144
(
1957
).
23.
N. C.
MacDonald
and
T. E.
Everhart
,
J. Appl. Phys.
39
,
2433
(
1968
).
24.
K.
Fuchs
,
Proc. Cambridge Phil. Soc.
34
,
100
(
1938
).
25.
F. W.
Reynolds
and
G. R.
Stillwell
,
Phys. Rev.
88
,
418
(
1952
).
26.
B. E.
Deal
,
J. Electrochem. Soc.
110
,
527
(
1963
).
27.
A.
Rose
,
Proc. IRE
43
,
1850
(
1955
).
28.
B. W.
Schumacher
and
S. S.
Mitra
,
Electronic Reliability and Microminiaturization
1
,
321
(
1962
).
29.
Integrated Silicon Device Technology, Technical Documentary Report No. ASD‐TDR‐63‐316 (Research Triangle Institute, Durham, North Carolina. 1965), Vol. VII, p. 104.
30.
L. V. Spencer, Energy Dissipation by Fast Electrons, Natl. Bur. Std. (U.S.) Monograph No. 1 (U.S. GPO, Washington, D.C., 1959).
31.
M. Lenzlinger, Extended Abstracts, Electronics Division, Report of the Electrochem. Soc. Meeting, 1970 (unpublished), p. 10.
32.
A. M.
Goodman
,
Phys. Rev.
144
,
588
(
1966
).
33.
M.
Lenzlinger
and
E. H.
Snow
,
J. Appl. Phys.
40
,
278
(
1969
).
34.
R. W. Hamming, Numerical Methods for Engineers and Scientists (McGraw‐Hill, New York, 1962), p. 229.
This content is only available via PDF.
You do not currently have access to this content.