The low‐temperature (1.4° to 4.2°K) specific heat, the ferromagnetic Curie temperature, and the magnetic moment of Ni–Cu solid solutions were measured near the composition where ferromagnetism terminates. The anomaly in the specific heat cannot be accounted for by the bT3 ln T term expected from electron‐paramagnon interaction, but it can be interpreted as a magnetic cluster contribution independent of temperature from 1.4° to 4.2°K. Another magnetic contribution is included in the term of the specific heat linear in temperature. Whether the maximum in the linear term at 50–54 at.% Cu should be attributed to this magnetic contribution or to the (enhanced) electronic specific heat is uncertain. For alloys near the critical composition the Curie temperature, as determined by methods based on high field data, is distinctly higher than that measured at low fields.

1.
K. P.
Gupta
,
C. H.
Cheng
, and
P. A.
Beck
,
Phys. Rev.
133
,
A203
(
1964
).
2.
This maximum has been recently confirmed by
M.
Dixon
,
F. E.
Hoare
, and
T. M.
Holden
,
Proc. Roy. Soc.
A303
,
339
(
1968
).
3.
E.
Bucher
,
W. F.
Brinkman
,
J. P.
Maita
, and
H. J.
Williams
,
Phys. Rev. Letters
18
,
1125
(
1967
);
and
W. F.
Brinkman
,
E.
Bucher
,
H. J.
Williams
, and
J. P.
Maita
,
J. Appl. Phys.
39
,
547
(
1968
).
4.
N. F.
Berk
and
J. R.
Schrieffer
,
Phys. Rev. Letters
17
,
433
(
1966
).
5.
S.
Doniach
and
S.
Engelsberg
,
Phys. Rev. Letters
17
,
750
(
1966
).
6.
K. H.
Bennemann
,
Phys. Rev.
167
,
564
(
1968
).
7.
S. A.
Ahern
,
M. J. C.
Martin
, and
W.
Sucksmith
,
Proc. Roy. Soc. (London)
248A
,
145
(
1958
).
8.
A. J. P.
Meyer
and
C.
Wolff
,
Compt. Rend. (Paris)
246
,
576
(
1958
).
9.
A. Arrott, thesis, Carnegie Inst. Tech., Pittsburgh, Pa. (1954).
10.
H. C.
Van Elst
,
B.
Lubach
, and
G. J.
Van den Berg
,
Physica
28
,
1297
(
1962
).
11.
A.
Arrott
,
Phys. Rev.
108
,
1394
(
1957
).
12.
J. S. Kouvel, Gen. Elec. Rept. No. 57‐RL‐1799 (1957).
13.
A. Arrott and J. E. Noakes, Iron and its Dilute Solid Solutions, C. W. Spencer and F. E. Werner, Eds. (Interscience Publishers, Inc., New York, 1963), p. 81.
14.
S.
Arajs
and
R. V.
Colvin
,
J. Appl. Phys.
35
,
2424
(
1964
).
15.
K.
Schröder
,
J. Appl. Phys.
32
,
880
(
1961
).
16.
R. M.
Ryan
,
E. W.
Pugh
, and
R.
Smoluchowski
,
Phys. Rev.
116
,
1106
(
1959
).
17.
A.
Hahn
and
E. P.
Wohlfarth
,
Helv. Phys. Acta (Busch Festschrift)
41
,
857
(
1968
), show that Eq. (1) gives a better fit than Eq. (2) for the Rh‐Ni specific heat data as well.
18.
A. I.
Schindler
and
S. C. A.
Mackleit
,
Phys. Rev. Letters
20
,
15
(
1968
);
A. I.
Schindler
and
B. R.
Coles
,
J. Appl. Phys.
39
,
956
(
1968
).
19.
T. J.
Hicks
,
B.
Rainford
J. S.
Kouvel
,
G. G.
Low
, and
J. B.
Comly
,
J. Appl. Phys.
40
,
1107
(
1969
).
20.
B.
Mozer
,
D. T.
Keating
, and
S. C.
Moss
,
Phys. Rev.
175
,
868
(
1968
).
21.
K. P.
Gupta
,
C. H.
Cheng
, and
P. A.
Beck
,
J. Phys. Chem. Solids
25
,
73
(
1963
).
22.
J. S.
Kouvel
and
C. D.
Graham
,
J. Phys. Chem. Solids
11
,
220
(
1959
).
23.
W.
Marshall
,
Phys. Rev.
118
,
1519
(
1960
).
This content is only available via PDF.
You do not currently have access to this content.