Fast‐neutron bombardment of silicon diodes changes the excess carrier diffusion length without significantly changing other diode parameters. Such bombardment is thus a useful tool for investigating diode theory. The technique is applied to an expression for the current‐voltage characteristic developed for the wide‐based p‐i‐n diode. For high level injection, there are two current density ranges of interest. First, a range where the base voltage is independent of current density and the total junction voltage V varies as exp(qV/2kT) with current. This region corresponds to unity emitter efficiency at each of the junctions. For higher current densities, the emitter efficiency decreases, and the base voltage increases as the square root of the current density. Also, the total junction voltage varies as exp(qV/kT) with current. The theoretical results are then shown to fit the current‐voltage characteristics of experimental wide‐based silicon p‐i‐n diodes.

1.
O. J. Mengali, E. Paskell, R. W. Beck, and C. S. Peet, Proceedings of the Second Conference on Nuclear Radiation Effects on Semiconductor Devices, Materials and Circuits, Sept. 1959.
2.
J. M.
Swartz
and
L.
Browne
,
IEEE Trans. Nucl. Sci.
NS‐10
,
63
(
1963
).
3.
J. J.
Loferski
and
P.
Rappaport
,
Phys. Rev.
111
,
432
(
1958
).
4.
R. N.
Hall
,
Proc. IRE
40
,
1512
(
1952
).
5.
V. I.
Stafeev
,
Zh. Tekhn. Fiz.
28
,
163
(
1958
)
[English transl.:
V. I.
Stafeev
,
Soviet Phys.‐Tech. Phys.
3
,
1502
(
1958
)].
6.
D. A.
Kleinman
,
Bell System Tech. J.
35
,
685
(
1956
).
7.
A.
Herlet
,
Z. Naturforsch.
11
,
498
(
1956
).
8.
A.
Herlet
and
E.
Spenke
,
Z. Angew. Phys.
3
,
149
(
1955
).
9.
R. H.
Parmenter
and
W.
Ruppel
,
J. Appl. Phys.
30
,
1548
(
1959
).
10.
A. K.
Jonscher
,
J. Electron. Control
5
,
1
(
1958
).
11.
A. K.
Jonscher
,
J. Electron. Control
5
,
226
(
1958
).
12.
M. A.
Lampert
,
RCA Rev.
20
,
682
(
1959
).
13.
M. A.
Lampert
and
A.
Rose
,
Phys. Rev.
121
,
26
(
1961
).
14.
A.
Rose
,
J. Appl. Phys.
35
,
2664
(
1964
).
15.
The div E should not exceed 100 V/cm2 in the base region of a wide based diode. Using this figure, Δp−Δn is ∼7×1010. Since we are interested in injected carrier densities on the order of 1013 and above, the assumption that Δn∼Δp is appropriate.
16.
See Ref. 5, p. 1504 for a derivation from the general nonlinear differential equation.
17.
The effect of the electric field on the distribution of carriers in the base region is retained in the ambipolar diffusion constant Da.
18.
W.
Van Roosbroeck
,
Phys. Rev.
91
,
282
(
1953
).
19.
R. W.
Lade
and
A. G.
Jordan
,
J. Electron. Control
13
,
23
(
1962
).
20.
C. T.
Shah
,
R. N.
Noyce
, and
W.
Shockley
,
Proc. IRE
45
,
1228
(
1957
).
21.
See Ref. 6; these equations are the same as Kleinman’s Eq. (70).
22.
J. Shields, Proc. Inst. Elec. Eng., Part B Suppl., Intern. Conv. Trans. Assoc. Semicon. Devices, 343 (1957).
23.
This result is identical with Kleinman’s Eq. (80) if one sets λ = λ.
24.
J. L.
Moll
,
Proc. IRE
46
,
1077
(
1958
).
25.
A.
Herlet
,
Z. Angew. Phys.
9
,
155
(
1957
).
26.
A mobility ratio of 2.8 was used for all theoretical curves. See
E. M.
Conwell
,
Proc. IRE
46
,
1281
(
1958
).
This content is only available via PDF.
You do not currently have access to this content.