The thermal‐oxidation kinetics of silicon are examined in detail. Based on a simple model of oxidation which takes into account the reactions occurring at the two boundaries of the oxide layer as well as the diffusion process, the general relationship x02+Ax0=B(t+τ) is derived. This relationship is shown to be in excellent agreement with oxidation data obtained over a wide range of temperature (700°–1300°C), partial pressure (0.1–1.0 atm) and oxide thickness (300–20 000 Å) for both oxygen and water oxidants. The parameters A, B, and τ are shown to be related to the physico‐chemical constants of the oxidation reaction in the predicted manner. Such detailed analysis also leads to further information regarding the nature of the transported species as well as space‐charge effects on the initial phase of oxidation.

1.
J. T.
Law
,
J. Phys. Chem.
61
,
1200
(
1957
).
2.
M. M. Atalla, Properties of Elemental and Compound Semiconductors, edited by H. Gatos (Interscience Publishers, Inc., New York, 1960), Vol. 5, pp. 163–181.
3.
J. R.
Ligenza
and
W. G.
Spitzer
,
J. Phys. Chem. Solids
14
,
131
(
1960
).
4.
J. R.
Ligenza
,
J. Phys. Chem.
65
,
2011
(
1961
).
5.
W. G.
Spitzer
and
J. R.
Ligenza
,
J. Phys. Chem. Solids
17
,
196
(
1961
).
6.
M. O. Thurston, J. C. C. Tsai, and K. D. Kang, “Diffusion of Impurities into Silicon Through an Oxide Layer,” Report 896‐Final, Ohio State University, Research Foundation, U.S. Army Signal Supply Agency Contract DA‐36‐039‐SC‐83874, March 1961.
7.
P. S. Flint, “The Rates of Oxidation of Silicon,” Paper presented at the Spring Meeting of The Electrochemical Society, Abstract No. 94, Los Angeles, 6–10 May 1962.
8.
P. J.
Jorgensen
,
J. Chem. Phys.
37
,
874
(
1962
).
9.
J. R.
Ligenza
,
J. Electrochem. Soc.
109
,
73
(
1962
).
10.
B. E.
Deal
,
J. Electrochem. Soc.
110
,
527
(
1963
).
11.
H.
Edagawa
,
Y.
Morita
,
S.
Maekawa
, and
Y.
Inuishi
,
J. Appl. Phys. (Japan)
2
,
765
(
1963
).
12.
N.
Karube
,
K.
Yamamoto
, and
M.
Kamiyama
,
J. Appl. Phys. (Japan)
2
,
11
(
1963
).
13.
H. C.
Evitts
,
H. W.
Cooper
, and
S. S.
Flaschen
,
J. Electrochem. Soc.
111
,
688
(
1964
).
14.
C. R. Fuller and F. J. Strieter, “Silicon Oxidation,” Paper presented at the Spring Meeting of The Electrochemical Society Abstract No. 74, Toronto, 3–7 May 1964.
15.
B. E.
Deal
and
M.
Sklar
,
J. Electrochem. Soc.
112
,
430
(
1965
).
16.
N.
Cabrera
and
N. F.
Mott
,
Rept. Progr. Phys.
12
,
163
(
1948
).
17.
W. A.
Pliskin
and
R. P.
Gnall
,
J. Electrochem. Soc.
111
,
872
(
1964
).
18.
J.
Bardeen
,
W. H.
Brattain
, and
W.
Shockley
,
J. Chem. Phys.
14
,
714
(
1946
).
19.
U. R.
Evans
,
Trans. Electrochem. Soc.
46
,
247
(
1924
).
20.
U. R. Evans, The Corrosion and Oxidation of Metals (Edward Arnold and Company, London, 1960), pp. 819–859.
21.
F. J.
Norton
,
Nature
171
,
701
(
1961
).
22.
A. J.
Moulson
and
J. P.
Roberts
,
Trans. Faraday Soc.
57
,
1208
(
1961
).
23.
H. Schlichting, Boundary Layer Theory (McGraw‐Hill Book Company, Inc., New York, 1960), 4th ed., Chap. 14;
and R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (John Wiley & Sons, Inc., New York, 1960), Paragraph 21.2.
24.
L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1960), 3rd ed.
25.
See abstracts of “Recent News” papers describing work of E. Yon, A. B. Kuper, and W. H. Ko, and of H. G. Carlson, C. R. Fuller, and J. Osborne, in J. Electrochem. Soc. 112, 259C (1965).
26.
A. T.
Fromhold
, Jr.
,
J. Phys. Chem. Solids
24
,
1081
(
1963
).
This content is only available via PDF.
You do not currently have access to this content.