The current modulation excited by a sinusoidal voltage across a narrow‐gap resonator on an electron beam with a Maxwellian distribution of velocities is treated on the basis of the linearized Boltzmann equation without collisions. The numerical part of the analysis reveals that the current modulation as function of distance has the form of a damped sinusoid, with finite minima, and approaches a constant level at large distances. These results are in qualitative agreement with experimental observations reported elsewhere. The analytical results show that the fast space‐charge wave of monovelocity theory is replaced by a continuum of waves (for ωp<ω). This fast‐wave packet decays with distance because of phase mixing, so that only the slow space‐charge wave survives at large distances. The spatial decay of the fast‐wave packet is the equivalent in multivelocity beams of temporal Landau damping in stationary plasmas.

1.
W. C.
Hahn
,
Gen. Elec. Rev.
42
,
258
(
1939
).
2.
S.
Ramo
,
Proc. Inst. Radio Engrs.
27
,
757
(
1939
).
3.
A. E.
Siegman
,
J. Appl. Phys.
28
,
1132
(
1959
);
and
A. E.
Siegman
,
D. A.
Watkins
, and
H.
Hsieh
,
J. Appl. Phys.
28
,
1138
(
1959
).
4.
J.
Berghammer
and
S.
Bloom
,
J. Appl. Phys.
31
,
454
(
1960
).
5.
D. K. C.
Mac Donald
,
Phil. Mag.
41
,
863
(
1950
).
6.
F. N. H.
Robinson
,
Phil. Mag.
43
,
51
(
1952
).
7.
L.
Landau
,
J. Phys. U.S.S.R.
10
,
25
(
1946
).
8.
N. G.
Van Kampen
,
Physica
21
,
949
(
1955
).
9.
K. M.
Case
,
Ann. Phys.
7
,
349
(
1957
).
10.
D.
Bohm
and
E. P.
Gross
,
Phys. Rev.
75
,
1851
,
1864
(
1949
).
11.
R. W.
Twiss
,
Phys. Rev.
88
,
1392
(
1952
).
12.
D.
Pines
and
D.
Bohm
,
Phys. Rev.
85
,
338
(
1952
).
13.
G.
Ecker
,
Z. Physik
140
,
274
and
(
1955
).
14.
J. M.
Dawson
,
Phys. Rev.
118
,
381
(
1960
).
15.
T. G. Mihran, paper presented at the International Congress on Microwave Tubes, Munich, Germany, June, 1960; Nachrichtentechn. Fachberichte “Mikrowellenroehren” (Friedrich Vieweg— Sohn, Braunschweig, Germany, 1961), Vol. 22.
16.
W. Knauer, paper presented at the International Congress on Micrwave Tubes, Munich, Germany, June, 1960.
17.
M. Caulton, B. Hershenov, and F. Paschke (to be published in this Journal).
18.
D. A.
Watkins
,
J. Appl. Phys.
23
,
568
(
1952
).
19.
W.
Veith
,
Z. angew. Physik
7
,
437
(
1955
).
20.
H.
Boersch
,
Z. Physik
139
,
115
(
1954
).
21.
H. M.
Mott‐Smith
,
J. Appl. Phys.
24
,
249
(
1953
).
22.
K. J.
Harker
,
J. Appl. Phys.
28
,
645
(
1957
).
23.
H. F.
Webster
,
J. Appl. Phys.
28
,
1388
(
1957
).
24.
T. W.
Johnston
,
Proc. Inst. Elec. Engrs.
105
, B Suppl. No.
12
,
907
(
1958
).
25.
D. R. Hamilton, J. K. Knipp, and J. B. H. Kuper, Klystrons and Microwave Triodes (McGraw‐Hill Book Company, Inc., New York, 1948), Radiation Laboratory Series No. 7, Chap. 5.
26.
W. J. Kleen, Electronics of Microwave Tubes (Academic Press Inc., New York, 1958), Chap. 6.
27.
L. A.
Harris
,
I.R.E. Trans. on Electron Devices
ED‐5
,
157
(
1958
).
28.
Jahnke‐Emde‐Lösch, Tables of Higher Functions (McGraw‐Hill Book Company, Inc., New York, 1960), sixth edition.
29.
Zdeněk Kopal, Numerical Analysis (John Wiley & Sons, Inc., New York, 1955), p. 452.
30.
S. V.
Yadavalli
,
Quart. Appl. Math.
12
,
105
(
1954
).
31.
O. E. H. Rydbeck and K. H. B. Wilhelmsson, Chalmers University of Technology, Research Report No. 1, 1959.
This content is only available via PDF.
You do not currently have access to this content.