A unified treatment of the mechanics of deformation and acoustic propagation in porous media is presented, and some new results and generalizations are derived. The writer's earlier theory of deformation of porous media derived from general principles of nonequilibrium thermodynamics is applied. The fluid‐solid medium is treated as a complex physical‐chemical system with resultant relaxation and viscoelastic properties of a very general nature. Specific relaxation models are discussed, and the general applicability of a correspondence principle is further emphasized. The theory of acoustic propagation is extended to include anisotropic media, solid dissipation, and other relaxation effects. Some typical examples of sources of dissipation other than fluid viscosity are considered.

1.
M. A.
Biot
,
J. Appl. Phys.
12
,
155
164
(
1941
);
M. A.
Biot
,
12
,
426
430
(
1941
).,
J. Appl. Phys.
2.
M. A.
Biot
and
F. M.
Clingan
,
J. Appl. Phys.
12
,
578
581
(
1941
);
M. A.
Biot
and
F. M.
Clingan
,
13
,
35
40
(
1942
).,
J. Appl. Phys.
3.
M. A.
Biot
,
J. Appl. Phys.
26
,
182
185
(
1955
).
4.
M. A.
Biot
,
J. Appl. Phys.
27
,
459
467
(
1956
).
5.
M. A.
Biot
,
J. Acoust. Soc. Am.
28
,
168
178
(
1956
);
M. A.
Biot
,
28
,
179
191
(
1956
).,
J. Acoust. Soc. Am.
6.
M. A.
Biot
,
J. Appl. Mech.
23
,
91
96
(
1956
).
7.
M. A.
Biot
and
D. G.
Willis
,
J. Appl. Mech.
24
,
594
601
(
1957
).
8.
V. A. Florin, Theory of Soil Consolidation, in Russian (Stroyizdat, Moscow, 1948).
9.
G. I.
Barenblatt
and
A. P.
Krylov
,
Izvest. Akad. Nauk SSSR
, Tech. Sci. Div. No.
2
,
5
13
(
1955
).
10.
J.
Frenkel
,
J. Phys. (U.S.S.R.)
8
,
230
(
1944
).
11.
Tan Tjong Kie, “Investigations on the rheological properties of clay” (in Dutch with English synopsis), dissertation, Technical University, Delft, Netherlands.
12.
E. C. Geuze and Tan Tjong Kie, The Mechanical Behavior of Clays (Academic Press Inc., New York, 1954).
13.
M. A.
Biot
,
J. Appl. Phys.
27
,
240
253
(
1956
).
14.
See Eq. (25) of reference 7. In the original papers,1 we used the total stress τij and the fluid pressure pf represented by the notations σij and σ.
15.
Body forces are neglected in the present derivation.
16.
The boundary S can be thought of not as a physical termination of the body but as any closed surface in the body. In this way, the surface tension at a physical boundary does not have to be introduced.
17.
A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover Publications, New York, 1944), 4th ed., pp. 43, 102.
18.
M. King
Hubbert
and
W.
Rubey
,
Bull. Geol. Soc. Am.
70
,
115
166
(
1959
).
19.
I.
Fatt
,
Bull. Am. Assoc. Petrol. Geologists
42
,
1924
1957
(
1958
).
20.
I.
Fatt
,
J. Appl. Mech.
26
,
296
297
(
1959
).
21.
Attention is called to the general character of the dissipation function [Eq. (4.3)]. It is valid for slip flow or other more complex interfacial effects and does not require that η be introduced explicitly.
22.
M. King
Hubbert
,
J. Geol.
48
,
785
944
(
1940
).
23.
Equation (80) of Hubbert’s paper in reference 22.
24.
M. A.
Biot
,
J. Appl. Phys.
25
,
1385
1391
(
1954
).
25.
M. A. Biot, in Proceedings Fourth Mid‐Western Conference on Solid Mechanics, Purdue University, 1955, pp. 94–108.
26.
M. A. Biot, Deformation and Flow of Solids, IUTAM Colloquium, Madrid, 1955, edited by R. Grammel (Springer‐Verlag, Berlin, 1956), pp. 251–263.
27.
M. A. Biot, Proceedings of the Third U.S. National Congress on Applied Mechanics (American Society of Mechanical Engineers, New York, 1958), pp. 1–18.
28.
Ch. J. de la Vallée Poussin, Cours d’Analyse Infinitesimale (Gauthiers Villars, Paris, 1925), Vol. II, p. 75.
29.
As pointed out in an earlier paper,27 this is a particular case of the problem represented by the integral equation
0pp+rf(r)dr = F(p)
. Its solution was given by Fuoss and Kirkwood30 and further discussed by Gross.31 The solution is
f(r) = (1/2πri) limε0[F(r+iε)−F(r−iε)]
.
30.
R. M.
Fuoss
and
J. G.
Kirkwood
,
J. Am. Chem. Soc.
63
,
385
394
(
1941
).
31.
B. Gross, Mathematical Structure of the Theories of Viscoelasticities (Hermann & Cie, Paris, 1953).
32.
G.
Paria
,
J. Math. and Phys.
36
,
338
346
(
1958
);
G.
Paria
,
Bull. Calcutta Math. Soc.
50
,
71
76
169
179
(
1958
).
33.
J.
Geertsma
and
D. C.
Smit
,
Geophysics
26
,
169
181
(
1961
).
34.
H.
Deresiewicz
,
Bull. Seismol. Soc. Am.
50
,
599
607
(
1960
);
H.
Deresiewicz
,
51
,
51
59
(
1961
).,
Bull. Seismol. Soc. Am.
35.
Equation (8.15) is also valid for cubic symmetry.
This content is only available via PDF.
You do not currently have access to this content.