In this article an attempt is made to examine the goals of current and of possible future types of research concerned with the non‐elastic deformation of metals. It is found that an understanding of non‐elastic deformation would be enhanced by research upon the following topics: 1. The anelasticity associated with the viscous behavior of grain boundaries and the at least temporary viscous behavior of slip bands. 2. The mechanics of the initiation and growth of twin bands. 3. The mechanics of the initiation and growth of slip bands, including the drop in resistance to deformation which accompanies the initial slip bands. 4. The mechanics of the segregation of solute atoms in solid solution, such as of carbon and nitrogen in iron. 5. The conditions under which strain hardening is not removed by recovery or by recrystallization, and hence under which a mechanical equation of state exists, i.e., under which a relation exists between strain rate, strain, stress, and temperature. 6. Variation of the heat of activation for plastic strain rate upon stress and upon the microstructure. 7. Anisotropy introduced by deformation.

1.
C. Zener, “Anelasticity of metals,” Trans. A.I.M.E. (in press).
2.
L.
Boltzmann
, “
Zur Theorie der elastische Nachwirkung
,”
Ann. d. Physik
7
,
624
(
1876
);
also
L.
Boltzmann
,
Sitz. Wien Akad.
[
2
]
70
,
275
(
1874
).
3.
E.
Orowan
, “
Zur Kristallplastizität
,”
Zeits. f. Physik
89
,
605
,
614
(
1934
).
4.
W. A. West, “Elastic after‐effects in iron wires from 20 °C to 550 °C,” communicated to A.I.M.E.
5.
W.
Rosenhain
and
D.
Ewen
, “
Intercrystalline cohesion in metals
,”
J. Inst. Metals
[
2
],
8
,
149
(
1912
);
also Introduction to Physical Metallurgy (Constable and Company, London, 1915) pp. 255–264.
6.
J. A.
Ewing
and
W.
Rosenhain
, “
Experiments in micrometallurgy—effects of strain
,”
Phil. Trans. Roy. Soc.
193
,
A353
(
1900
).
7.
J.
Muir
, “
Recovery of iron from overstrain
,”
Phil. Trans. Roy. Soc.
193
,
A1
(
1900
).
8.
W.
Rosenhain
, “
Deformation and fracture in iron and steel
,”
J. Iron and Steel
[
2
]
70
,
189
(
1906
).
9.
E. Schmid and W. Boas, Kristallplastizität (Verlagsbuchhandlung Julius Springer, Berlin, 1935), p. 100.
10.
C. S. Barrett, Structure of Metals (McGraw‐Hill Book Company, Inc., New York, 1943), p. 312.
11.
Reference 10, p. 90.
12.
Reference 10, p. 289.
13.
C. S.
Barrett
,
G.
Ansel
and
R. F.
Mehl
, “
Slip, twinning and cleavage in iron and silicon ferrite
,”
Trans. Am. Soc. Metals
25
,
702
(
1937
).
14.
B.
Chalmers
, “
Twinning of single crystals of tin
,”
Proc. Phys. Soc. (London)
47
,
733
(
1935
).
15.
M.
Polanyi
, “
Über eine Arte Gitterstorung, die einen Kristall plastisch machen konnte
,”
Zeits. f. Physik
89
,
660
(
1934
).
16.
P. Ludwik, Elemente der technologischen Mechanik (Verlagsbuchhandlung Julius Springer, Berlin, 1909).
17.
G. I.
Taylor
, “
Mechanism of plastic deformation of crystals, Part One
,”
Proc. Roy. Soc.
145A
,
362
(
1934
).
18.
G. I.
Taylor
, “
Plastic strain in metals
,”
J. Inst. Metals
62
,
307
(
1938
).
19.
C. A.
Edwards
and
L. B.
Pfeil
, “
Tensile properties of single iron crystals and the influence of crystal size upon the tensile properties of iron
,”
J. Iron and Steel Inst.
112
,
79
(
1925
).
20.
W. A.
Wood
, “
X‐ray studies of grain size in steels of different hardness values
,”
Phil. Mag.
10
,
1073
(
1930
).
21.
M.
Gensamer
and
C. E.
Lacy
,
Trans. A.S.M.E.
32
,
88
(
1944
).
22.
M.
Gensamer
,
E. B.
Pearsall
,
W. S.
Pellini
, and
J. R.
Low
, “
Tensile properties of pearlite, bainite and spheroidite
,”
Trans. Am. Soc. Metals
30
,
983
(
1942
).
23.
N. F.
Mott
and
F. R. N.
Nabarro
,
Proc. Phys. Soc. (London)
52
,
86
(
1940
).
24.
D.
Hanson
and
M. A.
Wheeler
, “
Deformation of metals under prolonged loading. Part I. Flow and fracture of aluminum
,”
J. Inst. Metals
45
,
1
(
1931
).
25.
A. Nadai, Plasticity (McGraw‐Hill Book Company, Inc., New York, 1931), Chap. 39.
26.
R.
Becker
, “
Über Plastizität, Verfestigung und Rekrystallisation
,”
Zeits. f. Tech. Physik
7
,
547
(
1926
).
27.
E. U.
Condon
,
Trans. A.I.M.E.
131
,
410
(
1938
).
28.
W.
Kauzmann
, “
Flow of metals from the standpoint of the chemical‐rate theory
,”
Trans. A.I.M.E.
143
,
57
(
1941
).
29.
S.
Dushman
,
L. W.
Dunbar
, and
H.
Huthsteiner
, “
Creep of metals
,”
J. App. Phys.
15
,
108
(
1944
).
30.
C.
Zener
and
J. H.
Hollomon
, “
Effect of strain rate upon plastic flow of steel
,”
J. App. Phys.
15
,
22
(
1944
).
31.
J. H. Hollomon, “Tensile deformation,” Metals Tech. (June, 1945).
32.
C. E.
Lacy
and
M.
Gensamer
, “
Tensile properties of alloyed ferrites
,”
Trans. Am. Soc. Metals
32
,
88
(
1944
).
33.
R. von Mises, “Mechanik der Festen Korper in plastischdeformablen Zustand,” Nachr. Gesellsch. Wissensch. zur Göttingen, Math‐Phys. Klasse, 1913.
34.
A.
Nadai
and
E.
Davis
, “
Plastic behavior of metals in the strain hardening range
,”
J. App. Phys.
8
,
205
(
1937
).
35.
L. Prandtl, Proc. 1st Int. Cong. App. Mech. p. 43 (1924).
36.
E.
Reuss
,
Zeits. F. Angew. U. Math. Mech.
10
,
266
(
1936
).
This content is only available via PDF.
You do not currently have access to this content.