Experimental values of second‐order transition temperatures Tm and of cubical expansion coefficients below and above this temperature are presented for several new materials, notably saran. The thermal expansion behavior of two‐component systems of incompatible materials (polystyrene plus polyolefins) has been studied. For relatively coarse dispersions (1000A), Tm is 82°C, independent of composition, while the difference Δβ in cubical expansion coefficient above and below Tm is directly proportional to the volume fraction of polystyrene in the mixture. Unplasticized saran behaves similarly in that Tm is constant while Δβ decreases linearly with increasing crystallinity. For molecular dispersions of incompatible materials both Tm and Δβ are functions of composition. It is shown that for most high polymers Tm increases with increasing intermolecular force constants, while the product of Tm and cubical coefficient of expansion above Tm is roughly constant (0.1 to 0.2).

1.
P. Ehrenfest, Comm. Leiden, Suppl. 75b (1933).
2.
J. E.
Mayer
and
S. F.
Streeter
,
J. Chem. Phys.
7
,
1019
(
1939
).
3.
N.
Bekkedahl
and
L. A.
Wood
,
Ind. Eng. Chem.
33
,
381
(
1941
). Dr. Wood, in a private communication, recommended the use of graduated capillaries made by Corning Glass Company.
4.
A.
Van Hook
and
L.
Silver
,
J. Chem. Phys.
10
,
686
(
1942
).
5.
W. O.
Baker
and
W. A.
Yager
,
J. Am. Chem. Soc.
64
,
2171
(
1942
), Fig. 5.
6.
R. C.
Reinhardt
,
Ind. Eng. Chem.
35
,
422
(
1943
).
7.
N.
Bekkedahl
,
J. Research Nat. Bur. Stand.
13
,
411
(
1934
).
8.
R. M. Wiley, The Dow Chemical Company, private discussion.
9.
E.
Jenckel
and
K.
Ueberreiter
,
Zeits. f. Physik. Chemie
A182
,
361
(
1938
).
10.
W.
Patnode
and
W. J.
Scheiber
,
J. Am. Chem. Soc.
61
,
3449
(
1939
).
11.
F. E.
Wiley
,
Ind. Eng. Chem.
34
,
1052
(
1942
).
12.
D. R. Stull, The Dow Chemical Company, unpublished data.
For details on method see
J. Am. Chem. Soc.
59
,
2726
(
1937
).
13.
J. D.
Ferry
and
G. S.
Parks
,
J. Chem. Phys.
4
,
70
(
1936
).
14.
N.
Bekkedahl
and
R. B.
Scott
,
J. Research Nat. Bur. Stand.
29
,
87
(
1942
).
15.
A.
Gemant
and
W.
Jackson
,
Phil. Mag.
23
,
960
(
1937
).
16.
I. Koga and K. Sadi, Electrotech. J. Japan, p. 79 (April, 1941).
17.
T. S.
Carswell
,
R. F.
Hayes
, and
H. K.
Nason
,
Ind. Eng. Chem.
34
,
454
(
1942
).
18.
K.
Ueberreiter
,
Zeits. f. Angew. Chemie
53
,
247
(
1940
).
19.
K.
Ueberreiter
,
Zeits. f. Physik. Chemie
B45
,
361
(
1940
).
20.
E.
Jenckel
,
Zeits. f. Physik. Chemie
A190
,
24
(
1941
).
21.
J. E.
Lennard‐Jones
and
A. F.
Devonshire
,
Proc. Roy. Soc.
170
,
464
(
1939
).
22.
A.
Harasima
,
Proc. Phys. Math. Soc. Japan
21
,
398
(
1939
).
23.
R.
Fuoss
,
J. Am. Chem. Soc.
63
,
369
(
1941
).
24.
H.
Mark
,
Ind. Eng. Chem.
34
,
1343
(
1942
).
25.
H. Mark, Chemistry of Large Molecules (Interscience Publishers, New York, 1943), p. 43.
This content is only available via PDF.
You do not currently have access to this content.