The evolution of the valence band, charge states of atoms, and optical and vibrational spectra in compounds Ca10−xMx(PO4)xY2, M = Fe, Ni, Cu, Mg; Y = OH, Cl, F was studied by using XPS, infrared, and optical spectroscopy, with the addition of quantum mechanics calculations. The changes in the bandgap in these compounds were analyzed. Isomorphic substitution of calcium ions in the cationic sublattice of calcium hydroxyapatite by metal ions changes the shape of the curve that represents the occupied part of the valence band only slightly. It retains a pronounced gapped character with different lengths of individual subbands—the upper and lower parts of the valence band. It is shown that the predominant position of rare earth and uranium atoms in the apatite structure is the Ca(2)-position. Isomorphic substitution of calcium atoms by metal atoms (Fe, Ni, Cu, Mg) in the apatite structure in the range of 1%–2% of atoms leads to the narrowing of the energy gap. The most significant narrowing is observed when calcium is substituted by nickel and copper. The theoretically calculated bandgap width in calcium apatites can be well described in terms of the generalized gradient approximation. The design of the structure of calcium apatites via the method of isomorphic substitutions in the cation sublattice makes it possible to control the bandgap width, thus expanding the field of practical application of these compounds.

1.
L. I.
Karbivska
and
V. L.
Karbivskii
,
Apatites and Tetraoxide Compounds
(
Akademperiodyka
,
Kyiv
,
2019
).
2.
L.
Zaccaria
,
S. J.
Tharakan
, and
S.
Altermatt
, “
Hydroxyapatite ceramic implants for cranioplasty in children: A single-center experience
,”
Child’s Nerv. Syst.
33
,
343
348
(
2017
).
3.
A.
Jaafar
,
C.
Hecker
,
P.
Árki
, and
Y.
Joseph
, “
Sol-gel derived hydroxyapatite coatings for titanium implants: A review
,”
Bioengineering
7
,
127
(
2020
).
4.
D.
Arcos
and
M.
Vallet-Regí
, “
Substituted hydroxyapatite coatings of bone implants
,”
J. Mater. Chem. B
8
,
1781
1800
(
2020
).
5.
P.
Feng
,
S.
Peng
,
C.
Shuai
,
C.
Gao
,
W.
Yang
,
S.
Bin
, and
A.
Min
, “
In situ generation of hydroxyapatite on biopolymer particles for fabrication of bone scaffolds owning bioactivity
,”
ACS Appl. Mater. Interfaces
12
,
46743
46755
(
2020
).
6.
G.
Montalbano
,
G.
Molino
,
S.
Fiorilli
, and
C.
Vitale-Brovarone
, “
Synthesis and incorporation of rod-like nano-hydroxyapatite into type I collagen matrix: A hybrid formulation for 3D printing of bone scaffolds
,”
J. Eur. Ceram. Soc.
40
,
3689
3697
(
2020
).
7.
H.
Huang
,
M.
Du
,
J.
Chen
,
S.
Zhong
, and
J.
Wang
, “
Preparation and characterization of abalone shells derived biological mesoporous hydroxyapatite microspheres for drug delivery
,”
Mater. Sci. Eng.: C
113
,
110969
(
2020
).
8.
S.
Lee
,
T.
Miyajima
,
A.
Sugawara-Narutaki
,
K.
Kato
, and
F.
Nagata
, “
Development of paclitaxel-loaded poly(lactic acid)/hydroxyapatite core-shell nanoparticles as a stimuli-responsive drug delivery system
,”
R. Soc. Open Sci.
8
,
202030
(
2021
).
9.
Y.
Liu
,
Y.
Tang
,
J.
Wu
,
J.
Sun
,
X.
Liao
,
Z.
Teng
, and
G.
Lu
, “
Facile synthesis of biodegradable flower-like hydroxyapatite for drug and gene delivery
,”
J. Colloid Interface Sci.
570
,
402
410
(
2020
).
10.
H.
Shao
,
J.
He
,
T.
Lin
,
Z.
Zhang
,
Y.
Zhang
, and
S.
Liu
, “
3D gel-printing of hydroxyapatite scaffold for bone tissue engineering
,”
Ceram. Int.
45
,
1163
1170
(
2019
).
11.
F.
Sharifanjazi
,
A.
Esmaeilkhanian
,
M.
Moradi
,
A.
Pakseresht
,
M. S.
Asl
,
H.
Karimi-Maleh
,
H. W.
Jang
,
M.
Shokouhimehr
, and
R. S.
Varma
, “
Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering
,”
Mater. Sci. Eng.: B
264
,
114950
(
2021
).
12.
B.
Priyadarshini
,
U.
Anjaneyulu
, and
U.
Vijayalakshmi
, “
Preparation and characterization of sol-gel derived Ce4+ doped hydroxyapatite and its in vitro biological evaluations for orthopedic applications
,”
Mater. Des.
119
,
446
455
(
2017
).
13.
A.
Pandey
,
S.
Midha
,
R. K.
Sharma
,
R.
Maurya
,
V. K.
Nigam
,
S.
Ghosh
, and
K.
Balani
, “
Antioxidant and antibacterial hydroxyapatite based biocomposite for orthopedic applications
,”
Mater. Sci. Eng.: C
88
,
13
24
(
2018
).
14.
A.
Haider
,
S.
Haider
,
S. S.
Han
, and
I.-K.
Kang
, “
Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: A review
,”
RSC Adv.
7
,
7442
7458
(
2017
).
15.
A.
Das
,
D.
Pamu
,
D. S.
Gomes
,
A. M. C.
Santos
,
G. A.
Neves
, and
R. R.
Menezes
, “
A brief review on hydroxyapatite production and use in biomedicine
,”
Cerâmica
65
,
282
302
(
2019
).
16.
M.
Ibrahim
,
M.
Labaki
,
J.-M.
Giraudon
, and
J.-F.
Lamonier
, “
Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review
,”
J. Hazard. Mater.
383
,
121139
(
2020
).
17.
Y.
Ding
,
J.
Liu
,
H.
Wang
,
G.
Shen
, and
R.
Yu
, “
A piezoelectric immunosensor for the detection of alpha-fetoprotein using an interface of gold/hydroxyapatite hybrid nanomaterial
,”
Biomaterials
28
,
2147
2154
(
2007
).
18.
Q. U.
Ain
,
H.
Zhang
,
M.
Yaseen
,
U.
Rasheed
,
K.
Liu
,
S.
Subhan
, and
Z.
Tong
, “
Facile fabrication of hydroxyapatite-magnetite-bentonite composite for efficient adsorption of Pb(II), Cd(II), and crystal violet from aqueous solution
,”
J. Clean. Prod.
247
,
119088
(
2020
).
19.
S. K.
Hubadillah
,
M. H. D.
Othman
,
Z. S.
Tai
,
M. R.
Jamalludin
,
N. K.
Yusuf
,
A.
Ahmad
,
M. A.
Rahman
,
J.
Jaafar
,
S. H. S. A.
Kadir
, and
Z.
Harun
, “
Novel hydroxyapatite-based bio-ceramic hollow fiber membrane derived from waste cow bone for textile wastewater treatment
,”
Chem. Eng. J.
379
,
122396
(
2020
).
20.
G.
Chen
,
R.
Shan
,
J.
Shi
,
C.
Liu
, and
B.
Yan
, “
Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts
,”
Energy Convers. Manage.
98
,
463
469
(
2015
).
21.
Y.
Essamlali
,
O.
Amadine
,
M.
Larzek
,
C.
Len
, and
M.
Zahouily
, “
Sodium modified hydroxyapatite: Highly efficient and stable solid-base catalyst for biodiesel production
,”
Energy Convers. Manage.
149
,
355
367
(
2017
).
22.
J.
Gupta
,
M.
Agarwal
, and
A. K.
Dalai
, “
Marble slurry derived hydroxyapatite as heterogeneous catalyst for biodiesel production from soybean oil
,”
Can. J. Chem. Eng.
96
,
1873
1880
(
2018
).
23.
D.
Chlala
,
J.-M.
Giraudon
,
M.
Labaki
, and
J.-F.
Lamonier
, “
Formaldehyde total oxidation on manganese-doped hydroxyapatite: The effect of Mn content
,”
Catalysts
10
,
1422
(
2020
).
24.
R. K.
More
,
N. R.
Lavande
, and
P. M.
More
, “
Mn supported on Ce substituted hydroxyapatite for VOC oxidation: Catalytic activity and calcination effect
,”
Catal. Lett.
150
,
419
428
(
2020
).
25.
K.
Yaemsunthorn
and
C.
Randorn
, “
Hydrogen production using economical and environmental friendly nanoparticulate hydroxyapatite and its ion doping
,”
Int. J. Hydrogen Energy
42
,
5056
5062
(
2017
).
26.
J. J.
Malpica-Maldonado
,
J. A.
Melo-Banda
,
A. L.
Martínez-Salazar
,
M.
Garcia-Hernández
,
N. P.
Díaz
, and
M. A.
Meraz
, “
Synthesis and characterization of Ni-Mo2C particles supported over hydroxyapatite for potential application as a catalyst for hydrogen production
,”
Int. J. Hydrogen Energy
44
,
12446
12454
(
2019
).
27.
A.
Fihri
,
C.
Len
,
R. S.
Varma
, and
A.
Solhy
, “
Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis
,”
Coord. Chem. Rev.
347
,
48
76
(
2017
).
28.
G.
Bharath
,
K.
Rambabu
,
A.
Hai
,
H.
Taher
, and
F.
Banat
, “
Development of Au and 1D hydroxyapatite nanohybrids supported on 2D boron nitride sheets as highly efficient catalysts for dehydrogenating glycerol to lactic acid
,”
ACS Sustain. Chem. Eng.
8
,
7278
7289
(
2020
).
29.
H.
Martínez-Hernández
,
J. A.
Mendoza-Nieto
,
H.
Pfeiffer
,
J.
Ortiz-Landeros
, and
L.
Téllez-Jurado
, “
Development of novel nanohydroxyapatite doped with silver as effective catalysts for carbon monoxide oxidation
,”
Chem. Eng. J.
401
,
125992
(
2020
).
30.
J.
Guo
,
P. N.
Duchesne
,
L.
Wang
,
R.
Song
,
M.
Xia
,
U.
Ulmer
,
W.
Sun
,
Y.
Dong
,
J. Y. Y.
Loh
,
N. P.
Kherani
,
J.
Du
,
B.
Zhu
,
W.
Huang
,
S.
Zhang
, and
G. A.
Ozin
, “
High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO2 reduction
,”
ACS Catal.
10
,
13668
13681
(
2020
).
31.
A.
Mushtaq
,
R.
Zhao
,
D.
Luo
,
E.
Dempsey
,
X.
Wang
,
M.
Zubair Iqbal
, and
X.
Kong
, “
Magnetic hydroxyapatite nanocomposites: The advances from synthesis to biomedical applications
,”
Mater. Des.
197
,
109269
(
2021
).
32.
M.-H.
Chen
,
N.
Hanagata
,
T.
Ikoma
,
J.-Y.
Huang
,
K.-Y.
Li
,
C.-P.
Lin
, and
F.-H.
Lin
, “
Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment
,”
Acta Biomater.
37
,
165
173
(
2016
).
33.
C.
Heng
,
X.
Zhou
,
X.
Zheng
,
M.
Liu
,
Y.
Wen
,
H.
Huang
,
D.
Fan
,
J.
Hui
,
X.
Zhang
, and
Y.
Wei
, “
Surface grafting of rare-earth ions doped hydroxyapatite nanorods (HAp:Ln(Eu/Tb)) with hydrophilic copolymers based on ligand exchange reaction: Biological imaging and cancer treatment
,”
Mater. Sci. Eng.: C
91
,
556
563
(
2018
).
34.
G.
Zeng
,
M.
Liu
,
R.
Jiang
,
C.
Heng
,
Q.
Huang
,
L.
Mao
,
J.
Hui
,
F.
Deng
,
X.
Zhang
, and
Y.
Wei
, “
Surface grafting of Eu3+ doped luminescent hydroxyapatite nanomaterials through metal free light initiated atom transfer radical polymerization for theranostic applications
,”
Mater. Sci. Eng.: C
77
,
420
426
(
2017
).
35.
A. T.
Simon
,
D.
Dutta
,
A.
Chattopadhyay
, and
S. S.
Ghosh
, “
Copper nanocluster-doped luminescent hydroxyapatite nanoparticles for antibacterial and antibiofilm applications
,”
ACS Omega
4
,
4697
4706
(
2019
).
36.
C. S.
Ciobanu
,
S. L.
Iconaru
,
P.
Le Coustumer
,
L. V.
Constantin
, and
D.
Predoi
, “
Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria
,”
Nanoscale Res. Lett.
7
,
324
(
2012
).
37.
D.
Predoi
,
C.
Popa
,
P.
Chapon
,
A.
Groza
, and
S.
Iconaru
, “
Evaluation of the antimicrobial activity of different antibiotics enhanced with silver-doped hydroxyapatite thin films
,”
Materials
9
,
778
(
2016
).
38.
A.
Groza
,
C.
Ciobanu
,
C.
Popa
,
S.
Iconaru
,
P.
Chapon
,
C.
Luculescu
,
M.
Ganciu
, and
D.
Predoi
, “
Structural properties and antifungal activity against Candida albicans biofilm of different composite layers based on Ag/Zn doped hydroxyapatite-polydimethylsiloxanes
,”
Polymers
8
,
131
(
2016
).
39.
R. U.
Mene
,
M. P.
Mahabole
,
K. C.
Mohite
, and
R. S.
Khairnar
, “
Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: Effect of molar concentrations
,”
Mater. Res. Bull.
50
,
227
234
(
2014
).
40.
P.
Kanchana
,
N.
Lavanya
, and
C.
Sekar
, “
Development of amperometric L-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles
,”
Mater. Sci. Eng.: C
35
,
85
91
(
2014
).
41.
P.
Kanchana
,
N.
Sudhan
,
C.
Sekar
, and
G.
Neri
, “
Manganese doped hydroxyapatite nanoparticles based enzyme-less electrochemical sensor for detecting hydroquinone
,”
J. Nanosci. Nanotechnol.
19
,
2034
2043
(
2019
).
42.
W.
Jiang
,
D.
Tian
,
L.
Zhang
et al, “
Dual signal amplification strategy for amperometric aptasensing using hydroxyapatite nanoparticles.: Application to the sensitive detection of the cancer biomarker platelet-derived growth factor BB
,”
Microchim. Acta
184
,
4375
4381
(
2017
).
43.
G.
Bharath
,
A.
Naldoni
,
K.
Hasini Ramsait
,
A. A.
Wahab
,
M.
Rajesh
,
A. H.
Edreese
, and
N.
Ponpandian
, “
Enhanced electrocatalytic activity of gold nanoparticles on hydroxyapatite nanorods for sensitive hydrazine sensors
,”
J. Mater. Chem. A
4
,
6385
6394
(
2016
).
44.
L.
Luo
,
Y.
Liu
,
Y.
Tan
et al, “
Room temperature gas sensor based on tube-like hydroxyapatite modified with gold nanoparticles
,”
J. Cent. South Univ.
23
,
18
26
(
2016
).
45.
M.
Sun
,
Z.
Li
,
Y.
Gu
,
S.
Wu
, and
X.
Wang
, “
Room-temperature high-performance ammonia gas sensor based on hydroxyapatite film
,”
Mater. Res. Express
6
,
106401
(
2019
).
46.
S.
Taha
,
S.
Begum
,
V. N.
Narwade
et al, “
Enhancing alcohol sensing properties of hydroxyapatite via synthesis of its composite with TiO2 nano-tube
,”
Appl. Phys. A
127
,
514
(
2021
).
47.
S. Y.
Park
,
J.-S.
Park
,
B. J.
Kim
et al, “
Sustainable lead management in halide perovskite solar cells
,”
Nat. Sustain.
3
,
1044
1051
(
2020
).
48.
M. Z.
Mokhtar
et al, “
Bioinspired scaffolds that sequester lead ions in physically damaged high efficiency perovskite solar cells
,”
Chem. Commun.
57
,
994
997
(
2021
).
49.
H. J.
Nkuissi
,
F. K.
Konan
,
B.
Hartiti
, and
J. M.
Ndjaka
,
Toxic Materials Used in Thin Film Photovoltaics and Their Impacts on Environment. In Book: Environmental Impacts of Solar Panels
(
Intechopen Publisher
,
Abdülkerim Gok
,
2020
).
50.
M.
Jarcho
,
C. H.
Bolen
,
M. B.
Thomas
,
J.
Bobick
,
J. F.
Kay
, and
R. H.
Doremus
, “
Hydroxylapatite synthesis and characterization in dense polycrystalline form
,”
J. Mater. Sci.
11
,
2027
2035
(
1976
).
51.
Y.
Li
,
D.
Wang
, and
S.
Lim
, “
Fabrication and applications of metal-ion-doped hydroxyapatite nanoparticles
,”
JOJ Mater. Sci.
1
,
555558
(
2017
).
52.
E.
Sjöstedt
,
L.
Nordström
, and
D. J.
Singh
, “
An alternative way of linearizing the augmented plane-wave method
,”
Solid State Commun.
114
,
15
20
(
2000
).
53.
K.
Schwarz
,
P.
Blaha
, and
G. K. H.
Madsen
, “
Electronic structure calculations of solids using the WIEN2k package for material sciences
,”
Comput. Phys. Commun.
147
,
71
76
(
2002
).
54.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
55.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
56.
P. E.
Blöchl
,
O.
Jepsen
, and
O. K.
Andersen
, “
Improved tetrahedron method for Brillouin-zone integrations
,”
Phys. Rev. B
49
,
16223
16233
(
1994
).
57.
J.
Tauc
,
R.
Grigorovici
, and
A.
Vancu
, “
Optical properties and electronic structure of amorphous germanium
,”
Phys. Status Solidi (B)
15
,
627
637
(
1966
).
58.
E. A.
Davis
and
N. F.
Mott
, “
Conduction in non-crystalline systems V: Conductivity, optical absorption and photoconductivity in amorphous semiconductors
,”
Philos. Mag.
22
,
0903
0922
(
1970
).
59.
N. F.
Mott
and
E. A.
Davis
,
Electronic Processes in Non-Crystalline Materials
(
Oxford University Press
,
2012
).
60.
J. I.
Pankove
,
Optical Processes in Semiconductors
(
Courier Corporation
,
1975
).
61.
P.
Makuła
,
M.
Pacia
, and
W.
Macyk
, “
How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra
,”
J. Phys. Chem. Lett.
9
,
6814
6817
(
2018
).
62.
V. S.
Bystrov
,
C.
Piccirillo
,
D. M.
Tobaldi
,
P. M. L.
Castro
,
J.
Coutinho
,
S.
Kopyl
, and
R. C.
Pullar
, “
Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: Comparing modelling with measured data
,”
Appl. Catal. B: Environ.
196
,
100
107
(
2016
).
63.
A.
Slepko
and
A. A.
Demkov
, “
First-principles study of the biomineral hydroxyapatite
,”
Phys. Rev. B
84
,
134108
(
2011
).
64.
M.
Eddya
,
B.
Tbib
, and
K.
El-Hami
,
High Photocatalytic Activity of Hydroxyapatite Bio-degradable Semiconductor for Solar Panels and Environment Protection
(
ISTE OpenScience
,
2018
).
65.
M.
Goeppert Mayer
, “
Rare-earth and transuranic elements
,”
Phys. Rev.
60
,
184
187
(
1941
).
66.
R. I.
Karaziya
, “
Excited electron orbit collapse and atomic spectra
,”
Sov. Phys. Usp.
24
,
775
794
(
1981
).
67.
A. P.
Shpak
,
V. V.
Trachevsky
, and
V. L.
Karbivskyy
,
Actinides in Self-Organizing Systems. Book 1. Actinides in Technogenesis
(
Akademperiodika
,
Kyiv
,
2002
) (in Russian).
68.
A. P.
Shpak
,
V. V.
Trachevsky
, and
V. L.
Karbivskyy
,
Actinides in Self-Organizing Systems.: Book 2. The Nature of the Bioactivity of Actinides
(
Akademperiodika
,
Kyiv
,
2002
) (in Russian).
69.
A. P.
Shpak
,
V. V.
Trachevsky
, and
V. L.
Karbivskyy
,
Actinides in Self-Organizing Systems. Book 3. Bioeffects of Radiation and Toxicological Environmental Factors
(
Academperiodika
,
Kyiv
,
2003
) (in Russian).
70.
A. P.
Shpak
,
V. V.
Trachevsky
, and
V. L.
Karbivskyy
,
Physical Chemistry of Actinides
(
Akademperiodika
,
Kyiv
,
2002
) (in Russian).
71.
G.
Panczer
,
M.
Gaft
,
R.
Reisfeld
,
S.
Shoval
,
G.
Boulon
, and
B.
Champagnon
, “
Luminescence of uranium in natural apatites
,”
J. Alloys Compd.
275–277
,
269
272
(
1998
).
72.
O.
Fujino
,
S.
Umetani
,
E.
Ueno
,
K.
Shigeta
, and
T.
Matsuda
, “
Determination of uranium and thorium in apatite minerals by inductively coupled plasma atomic emission spectrometry with solvent extraction separation into diisobutyl ketone
,”
Anal. Chim. Acta
420
,
65
71
(
2000
).
73.
J. V.
Bothe
and
P. W.
Brown
, “
Apatite formation in the CaO-PbO-P2O5-H2O system at 23 °C ± 1 °C
,”
J. Am. Ceram. Soc.
83
,
612
616
(
2000
).
74.
E.
Ordonez-Regil
,
E. T. R.
Guzman
, and
E. O.
Regil
, “
Surface modification in natural fluorapatite after uranyl solution treatment
,”
J. Radioanal. Nucl. Chem.
240
,
541
545
(
1999
).
75.
V. V.
Nemoshkalenko
and
V. N.
Antonov
,
Computational Physics Methods in Solid State Theory
(
Naukova Dumka
,
Kyiv
,
1985
).
76.
R. F. W.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Clarendon Press
,
1994
).
77.
H.
Tanaka
and
A.
Ohnishi
, “
Synthesis of Ti(IV)-substituted calcium hydroxyapatite microparticles by hydrolysis of phenyl phosphates
,”
Adv. Powder Technol.
24
,
1028
1033
(
2013
).
78.
S. J.
Kashyap
,
R.
Sankannavar
, and
G. M.
Madhu
, “
Hydroxyapatite nanoparticles synthesized with a wide range of Ca/P molar ratios and their structural, optical, and dielectric characterization
,”
J. Korean Ceram. Soc.
59
,
846
858
(
2022
).
79.
C.
Boucetta
,
M.
Kacimi
,
A.
Ensuque
,
J.-Y.
Piquemal
,
F.
Bozon-Verduraz
, and
M.
Ziyad
, “
Oxidative dehydrogenation of propane over chromium-loaded calcium-hydroxyapatite
,”
Appl. Catal. A: Gen.
356
,
201
210
(
2009
).
80.
H.
Nishikawa
, “
Thermal behavior of hydroxyapatite in structural and spectrophotometric characteristics
,”
Mater. Lett.
50
,
364
370
(
2001
).
81.
V. S.
Bystrov
,
L. A.
Avakyan
,
E. V.
Paramonova
,
J.
Castro
, and
J.
Coutinho
, “
Sub-band gap absorption mechanisms involving oxygen vacancies in hydroxyapatite
,”
J. Phys. Chem. C.
123
,
4856
4865
(
2019
).
82.
C.
Piccirillo
,
R. C.
Pullar
,
E.
Costa
,
A.
Santos-Silva
,
M. M. E.
Pintado
, and
P. M. L.
Castro
, “
Hydroxyapatite-based materials of marine origin: A bioactivity and sintering study
,”
Mater. Sci. Eng.: C
51
,
309
315
(
2015
).
83.
Y. A.
Hariyanto
et al, “
Study on structural characters of nano-sized hydroxyapatite prepared from limestone
,”
IOP Conf. Ser.: Mater. Sci. Eng.
515
,
012020
(
2019
).
84.
T. R.
Machado
,
J. C.
Sczancoski
,
H.
Beltrán-Mir
,
M. S.
Li
,
J.
Andrés
,
E.
Cordoncillo
,
E.
Leite
, and
E.
Longo
, “
Structural properties and self-activated photoluminescence emissions in hydroxyapatite with distinct particle shapes
,”
Ceram. Int.
44
,
236
245
(
2018
).
85.
J. B. R.
Trigos
,
Y.
Jiménez-Flores
,
V.
Suárez
,
M.
Suárez-Quezada
, and
U.
Nogal
, “
Sol-gel synthesis of calcium-deficient hydroxyapatite: Influence of the pH behavior during synthesis on the structural, chemical composition and physical properties
,” in
Powder Technology
(
InTech
,
2018
).
86.
K.
Nakamoto
,
Infrared Spectra of Inorganic and Coordination Compounds
(
Inc. John Wiley & Sons
,
Hoboken
,
1965
).
87.
N. A.
Kurgan
,
L. I.
Karbіvska
, and
V. L.
Karbivskyy
, “
Substitution of calcium ions by ions of 3d-metals and Mg in the structure of apatite
,”
Metallofiz. Noveishie Tekhnol.
39
,
1693
1706
(
2018
) (in Russian).
88.
G. C.
Gomes
,
F. F.
Borghi
,
R. O.
Ospina
,
E. O.
López
,
F. O.
Borges
, and
A.
Mello
, “
Nd:YAG (532 nm) pulsed laser deposition produces crystalline hydroxyapatite thin coatings at room temperature
,”
Surf. Coat. Technol.
329
,
174
183
(
2017
).
89.
A.
Anwar
,
Q.
Kanwal
,
S.
Akbar
,
A.
Munawar
,
A.
Durrani
, and
M.
Hassan Farooq
, “
Synthesis and characterization of pure and nanosized hydroxyapatite bioceramics
,”
Nanotechnol. Rev.
6
,
149
157
(
2017
).
You do not currently have access to this content.