MoS2 has generated significant attention due to its unique electronic properties and versatile applications. Being a van der Waals material, MoS2 is expected to exhibit an inert surface due to lack of dangling bond. However, our photoemission study finds MoS2 to be highly sensitive toward residual gases. The position of the valence band maximum (VBM) shifts even in a vacuum of 10−10 Torr. We find this to be due to CO adsorption causing unintentional electron doping. The time evolution of the position of VBM is exponential, and it reaches two different saturation points, depending on whether the sample is exposed to ultraviolet (UV) radiation or not. Our XPS (x-ray photoemission spectroscopy) study shows no time-dependent escape of sulfur, which was in a previous study attributed to a VBM shift. The VBM shift can be reversed by annealing, sputtering, and UV light, which desorb CO gases. The study shows that the MoS2 surface is easily doped, which offers the possibility of using it as a sensor but in many other applications could diminish device performance and needs to be considered.

1.
S.
Chen
,
S.
Kim
,
W.
Chen
,
J.
Yuan
,
R.
Bashir
,
J.
Lou
,
A. M.
Van Der Zande
, and
W. P.
King
, “
Monolayer MoS2 nanoribbon transistors fabricated by scanning probe lithography
,”
Nano Lett.
19
(
3
),
2092
2098
(
2019
).
2.
L.
Zhang
,
X.
Ji
,
X.
Ren
,
Y.
Ma
,
X.
Shi
,
Z.
Tian
,
A. M.
Asiri
,
L.
Chen
,
B.
Tang
, and
X.
Sun
, “
Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies
,”
Adv. Mater.
30
(
28
),
1800191
(
2018
).
3.
Y.
Shi
,
Y.
Zhou
,
D.-R.
Yang
,
W.-X.
Xu
,
C.
Wang
,
F.-B.
Wang
,
J.-J.
Xu
,
X.-H.
Xia
, and
H.-Y.
Chen
, “
Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction
,”
J. Am. Chem. Soc.
139
(
43
),
15479
15485
(
2017
).
4.
H.
Wang
,
C.
Tsai
,
D.
Kong
,
K.
Chan
,
F.
Abild-Pedersen
,
J. K.
Nørskov
, and
Y.
Cui
, “
Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution
,”
Nano Res.
8
(
2
),
566
575
(
2015
).
5.
A.
Ramasubramaniam
,
D.
Naveh
, and
E.
Towe
, “
Tunable band gaps in bilayer transition-metal dichalcogenides
,”
Phys. Rev. B
84
(
20
),
205325
(
2011
).
6.
J.
Zhu
,
J.
Wu
,
Y.
Sun
,
J.
Huang
,
Y.
Xia
,
H.
Wang
,
H.
Wang
,
Y.
Wang
,
Q.
Yi
, and
G.
Zou
, “
Thickness-dependent bandgap tunable molybdenum disulfide films for optoelectronics
,”
RSC Adv.
6
(
112
),
110604
110609
(
2016
).
7.
W.
Bao
,
X.
Cai
,
D.
Kim
,
K.
Sridhara
, and
M. S.
Fuhrer
, “
High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects
,”
Appl. Phys. Lett.
102
(
4
),
042104
(
2013
).
8.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
, “
Emerging photoluminescence in monolayer MoS2
,”
Nano Lett.
10
(
4
),
1271
1275
(
2010
).
9.
E.
Singh
,
P.
Singh
,
K. S.
Kim
,
G. Y.
Yeom
, and
H. S.
Nalwa
, “
Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics
,”
ACS Appl. Mater. Interfaces
11
(
12
),
11061
11105
(
2019
).
10.
J.
Pak
,
I.
Lee
,
K.
Cho
,
J.-K.
Kim
,
H.
Jeong
,
W.-T.
Hwang
,
G. H.
Ahn
,
K.
Kang
,
W. J.
Yu
,
A.
Javey
,
S.
Chung
, and
T.
Lee
, “
Intrinsic optoelectronic characteristics of MoS2 phototransistors via a fully transparent van der Waals heterostructure
,”
ACS Nano
13
(
8
),
9638
9646
(
2019
).
11.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
(
11
),
699
712
(
2012
).
12.
M. R.
De Brimont
,
C.
Dupont
,
A.
Daudin
,
C.
Geantet
, and
P.
Raybaud
, “
Deoxygenation mechanisms on Ni-promoted MoS2 bulk catalysts: A combined experimental and theoretical study
,”
J. Catal.
286
,
153
164
(
2012
).
13.
A.
Vijayan
and
N.
Sandhyarani
, “
Enhancing the catalytic activity of bulk MoS2 towards hydrogen evolution reaction by the formation of MoS2-MoO3-Re2O7 heterostructure
,”
J. Colloid Interface Sci.
623
,
819
831
(
2022
).
14.
D.-S.
Tsai
,
K.-K.
Liu
,
D.-H.
Lien
,
M.-L.
Tsai
,
C.-F.
Kang
,
C.-A.
Lin
,
L.-J.
Li
, and
J.-H.
He
, “
Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments
,”
ACS Nano
7
(
5
),
3905
3911
(
2013
).
15.
E.
Singh
,
K. S.
Kim
,
G. Y.
Yeom
, and
H. S.
Nalwa
, “
Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells
,”
ACS Appl. Mater. Interfaces
9
(
4
),
3223
3245
(
2017
).
16.
A.
Capasso
,
F.
Matteocci
,
L.
Najafi
,
M.
Prato
,
J.
Buha
,
L.
Cinà
,
V.
Pellegrini
,
A. D.
Carlo
, and
F.
Bonaccorso
, “
Few-layer MoS2 flakes as active buffer layer for stable perovskite solar cells
,”
Adv. Energy Mater.
6
(
16
),
1600920
(
2016
).
17.
Z.
Yin
,
X.
Zhang
,
Y.
Cai
,
J.
Chen
,
J. I.
Wong
,
Y.-Y.
Tay
,
J.
Chai
,
J.
Wu
,
Z.
Zeng
,
B.
Zheng
,
H. Y.
Yang
, and
H.
Zhang
, “
Preparation of MoS2–MoO3 hybrid nanomaterials for light-emitting diodes
,”
Angew. Chem. Int. Ed.
53
(
46
),
12560
12565
(
2014
).
18.
X.
Wang
,
P.
Wang
,
J.
Wang
,
W.
Hu
,
X.
Zhou
,
N.
Guo
,
H.
Huang
,
S.
Sun
,
H.
Shen
,
T.
Lin
,
M.
Tang
,
L.
Liao
,
A.
Jiang
,
J.
Sun
,
X.
Meng
,
X.
Chen
,
W.
Lu
, and
J.
Chu
, “
Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics
,”
Adv. Mater.
27
(
42
),
6575
6581
(
2015
).
19.
M. M.
Furchi
,
A.
Pospischil
,
F.
Libisch
,
J.
Burgdörfer
, and
T.
Mueller
, “
Photovoltaic effect in an electrically tunable van der Waals heterojunction
,”
Nano Lett.
14
(
8
),
4785
4791
(
2014
).
20.
F.
Wang
,
L.
Yin
,
Z. X.
Wang
,
K.
Xu
,
F. M.
Wang
,
T. A.
Shifa
,
Y.
Huang
,
C.
Jiang
, and
J.
He
, “
Configuration-dependent electrically tunable van der Waals heterostructures based on MoTe2/MoS2
,”
Adv. Funct. Mater.
26
(
30
),
5499
5506
(
2016
).
21.
A.
Pezeshki
,
S. H. H.
Shokouh
,
T.
Nazari
,
K.
Oh
, and
S.
Im
, “
Electric and photovoltaic behavior of a few-layer α-MoTe2/MoS2 dichalcogenide heterojunction
,”
Adv. Mater.
28
(
16
),
3216
3222
(
2016
).
22.
W.
Zhang
,
J.-K.
Huang
,
C.-H.
Chen
,
Y.-H.
Chang
,
Y.-J.
Cheng
, and
L.-J.
Li
, “
High gain phototransistors based on a CVD MoS2 monolayer
,”
Adv. Mater.
25
(
25
),
3456
3461
(
2013
).
23.
C.
Nie
,
L.
Yu
,
X.
Wei
,
J.
Shen
,
W.
Lu
,
W.
Chen
,
S.
Feng
, and
H.
Shi
, “
Ultrafast growth of large-area monolayer MoS2 film via gold foil assistant CVD for a highly sensitive photodetector
,”
Nanotechnology
28
(
27
),
275203
(
2017
).
24.
A.
Shokri
and
N.
Salami
, “
Gas sensor based on MoS2 monolayer
,”
Sens. Actuators B
236
,
378
385
(
2016
).
25.
F. K.
Perkins
,
A. L.
Friedman
,
E.
Cobas
,
P.
Campbell
,
G.
Jernigan
, and
B. T.
Jonker
, “
Chemical vapor sensing with monolayer MoS2
,”
Nano Lett.
13
(
2
),
668
673
(
2013
).
26.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
, “
Single-layer MoS2 transistors
,”
Nat. Nanotechnol.
6
(
3
),
147
150
(
2011
).
27.
P.
Yang
,
H.
Yang
,
Z.
Wu
,
F.
Liao
,
X.
Guo
,
J.
Deng
,
Q.
Xu
,
H.
Wang
,
J.
Sun
,
F.
Chen
,
W.
Bao
,
L.
Hu
,
Z.
Liu
,
Y.
Chen
,
Z.-J.
Qiu
,
Z.
Fang
,
R.
Liu
, and
C.
Cong
, “
Large-area monolayer MoS2 nanosheets on GaN substrates for light-emitting diodes and valley-spin electronic devices
,”
ACS Appl. Nano Mater.
4
(
11
),
12127
12136
(
2021
).
28.
H.
Zeng
,
J.
Dai
,
W.
Yao
,
D.
Xiao
, and
X.
Cui
, “
Valley polarization in MoS2 monolayers by optical pumping
,”
Nat. Nanotechnol.
7
(
8
),
490
493
(
2012
).
29.
W.
Zhou
,
X.
Zou
,
S.
Najmaei
,
Z.
Liu
,
Y.
Shi
,
J.
Kong
,
J.
Lou
,
P. M.
Ajayan
,
B. I.
Yakobson
, and
J.-C.
Idrobo
, “
Intrinsic structural defects in monolayer molybdenum disulfide
,”
Nano Lett.
13
(
6
),
2615
2622
(
2013
).
30.
H.
Qiu
,
T.
Xu
,
Z.
Wang
,
W.
Ren
,
H.
Nan
,
Z.
Ni
,
Q.
Chen
,
S.
Yuan
,
F.
Miao
,
F.
Song
,
G.
Long
,
Y.
Shi
,
L.
Sun
,
J.
Wang
, and
X.
Wang
, “
Hopping transport through defect-induced localized states in molybdenum disulphide
,”
Nat. Commun.
4
(
1
),
1
6
(
2013
).
31.
R.
Addou
,
L.
Colombo
, and
R. M.
Wallace
, “
Surface defects on natural MoS2
,”
ACS Appl. Mater. Interfaces
7
(
22
),
11921
11929
(
2015
).
32.
M.
Donarelli
,
F.
Bisti
,
F.
Perrozzi
, and
L.
Ottaviano
, “
Tunable sulfur desorption in exfoliated MoS2 by means of thermal annealing in ultra-high vacuum
,”
Chem. Phys. Lett.
588
,
198
202
(
2013
).
33.
W.
Lu
,
B.
Birmingham
, and
Z.
Zhang
, “
Defect engineering on MoS2 surface with argon ion bombardments and thermal annealing
,”
Appl. Surf. Sci.
532
,
147461
(
2020
).
34.
S. W.
Han
,
W. S.
Yun
,
H.
Kim
,
Y.
Kim
,
D.-H.
Kim
,
C. W.
Ahn
, and
S.
Ryu
, “
Hole doping effect of MoS2 via electron capture of He+ ion irradiation
,”
Sci. Rep.
11
(
1
),
1
(
2021
).
35.
M.
Ghorbani-Asl
,
S.
Kretschmer
,
D. E.
Spearot
, and
A. V.
Krasheninnikov
, “
Two-dimensional MoS2 under ion irradiation: From controlled defect production to electronic structure engineering
,”
2D Mater.
4
(
2
),
025078
(
2017
).
36.
F.
Bussolotti
,
J.
Yang
,
H.
Kawai
,
C. P. Y.
Wong
, and
K. E. J.
Goh
, “
Impact of S-vacancies on the charge injection barrier at the electrical contact with the MoS2 monolayer
,”
ACS Nano
15
(
2
),
2686
2697
(
2021
).
37.
D. J.
Trainer
,
J.
Nieminen
,
F.
Bobba
,
B.
Wang
,
X.
Xi
,
A.
Bansil
, and
M.
Iavarone
, “
Visualization of defect induced in-gap states in monolayer MoS2
,”
NPJ 2D Mater. Appl.
6
(
1
),
13
(
2022
).
38.
M.
Siao
,
W.
Shen
,
R.
Chen
,
Z.
Chang
,
M.
Shih
,
Y.
Chiu
, and
C.-M.
Cheng
, “
Two-dimensional electronic transport and surface electron accumulation in MoS2
,”
Nat. Commun.
9
(
1
),
1442
(
2018
).
39.
X.
Zhang
,
S.
Wang
,
C.-K.
Lee
,
C.-M.
Cheng
,
J.-C.
Lan
,
X.
Li
,
J.
Qiao
, and
X.
Tao
, “
Unravelling the effect of sulfur vacancies on the electronic structure of the MoS2 crystal
,”
Phys. Chem. Chem. Phys.
22
(
38
),
21776
21783
(
2020
).
40.
M. A.
Baker
,
R.
Gilmore
,
C.
Lenardi
, and
W.
Gissler
, “
XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions
,”
Appl. Surf. Sci.
150
(
1–4
),
255
262
(
1999
).
41.
S. W.
Han
,
G.-B.
Cha
,
Y.
Park
, and
S.
Hong
, “
Hydrogen physisorption based on the dissociative hydrogen chemisorption at the sulphur vacancy of MoS2 surface
,”
Sci. Rep.
7
(
1
),
1
(
2017
).
42.
R.
Addou
,
S.
McDonnell
,
D.
Barrera
,
Z.
Guo
,
A.
Azcatl
,
J.
Wang
,
H.
Zhu
,
C. L.
Hinkle
,
M.
Quevedo-Lopez
,
H. N.
Alshareef
,
L.
Colombo
,
J. W. P.
Hsu
, and
R. M.
Wallace
, “
Impurities and electronic property variations of natural MoS2 crystal surfaces
,”
ACS Nano
9
(
9
),
9124
9133
(
2015
).
43.
S. W.
Han
,
G.-B.
Cha
,
M.
Kang
,
J. D.
Lee
, and
S. C.
Hong
, “
Hydrogen interaction with selectively desulfurized MoS2 surface using Ne+ sputtering
,”
J. Appl. Phys.
125
(
8
), 085102 (
2019
).
44.
T.
Komesu
,
D.
Le
,
X.
Zhang
,
Q.
Ma
,
E. F.
Schwier
,
Y.
Kojima
,
M.
Zheng
,
H.
Iwasawa
,
K.
Shimada
,
M.
Taniguchi
,
L.
Bartels
,
T. S.
Rahman
, and
P. A.
Dowben
, “
Occupied and unoccupied electronic structure of Na doped MoS2 (0001)
,”
Appl. Phys. Lett.
105
(
24
),
241602
(
2014
).
45.
S. W.
Han
,
G.-B.
Cha
,
K.
Kim
, and
S. C.
Hong
, “
Hydrogen interaction with a sulfur-vacancy-induced occupied defect state in the electronic band structure of MoS2
,”
Phys. Chem. Chem. Phys.
21
(
28
),
15302
15309
(
2019
).
46.
D.
Nevola
,
B.
Hoffman
,
A.
Bataller
,
H.
Ade
,
K.
Gundogdu
, and
D.
Dougherty
, “
Rigid valence band shift due to molecular surface counter-doping of MoS2
,”
Surf. Sci.
679
,
254
258
(
2019
).
47.
S. W.
Han
,
G.-B.
Cha
,
E.
Frantzeskakis
,
I.
Razado-Colambo
,
J.
Avila
,
Y. S.
Park
,
D.
Kim
,
J.
Hwang
,
J. S.
Kang
,
S.
Ryu
,
W. S.
Yun
,
S. C.
Hong
, and
M. C.
Asensio
, “
Band-gap expansion in the surface-localized electronic structure of MoS2(0002)
,”
Phys. Rev. B
86
(
11
),
115105
(
2012
).
48.
S.
Mahatha
,
K.
Patel
, and
K. S.
Menon
, “
Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies
,”
J. Phys.: Condens. Matter
24
(
47
),
475504
(
2012
).
49.
H. J.
Kim
,
B. K.
Choi
,
I. H.
Lee
,
M. J.
Kim
,
S.-H.
Chun
,
C.
Jozwiak
,
A.
Bostwick
,
E.
Rotenberg
, and
Y. J.
Chang
, “
Electronic structure and charge-density wave transition in monolayer VS2
,”
Curr. Appl. Phys.
30
,
8
13
(
2021
).
50.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
, “
Atomically thin MoS2: A new direct-gap semiconductor
,”
Phys. Rev. Lett.
105
(
13
),
136805
(
2010
).
51.
M.
Bianchi
,
R. C.
Hatch
,
D.
Guan
,
T.
Planke
,
J.
Mi
,
B. B.
Iversen
, and
P.
Hofmann
, “
The electronic structure of clean and adsorbate-covered Bi2Se3: An angle-resolved photoemission study
,”
Semicond. Sci. Technol.
27
(
12
),
124001
(
2012
).
52.
M.
Bianchi
,
R. C.
Hatch
,
J.
Mi
,
B. B.
Iversen
, and
P.
Hofmann
, “
Simultaneous quantization of bulk conduction and valence states through adsorption of nonmagnetic impurities on Bi2Se3
,”
Phys. Rev. Lett.
107
(
8
),
086802
(
2011
).
53.
D.
Hsieh
,
Y.
Xia
,
D.
Qian
,
L.
Wray
,
F.
Meier
,
J.
Dil
,
J.
Osterwalder
,
L.
Patthey
,
A.
Fedorov
,
H.
Lin
,
A.
Bansil
,
D.
Grauer
,
Y. S.
Hor
,
R. J.
Cava
, and
M. Z.
Hasan
, “
Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3
,”
Phys. Rev. Lett.
103
(
14
),
146401
(
2009
).
54.
S.
Mahatha
and
K. S.
Menon
, “
Inhomogeneous band bending on MoS2 (0001) arising from surface steps and dislocations
,”
J. Phys.: Condens. Matter
24
(
30
),
305502
(
2012
).
55.
R. J.
Ouellette
and
J. D.
Rawn
,
Principles of Organic Chemistry
(
Academic Press
,
2015
).
56.
S. N.
Parshina
,
J.
Sipma
,
A. M.
Henstra
, and
A. J.
Stams
, “
Carbon monoxide as an electron donor for the biological reduction of sulphate
,”
Int. J. Microbiol.
2010
,
319527
(
2010
).
57.
M. M.
Furchi
,
D. K.
Polyushkin
,
A.
Pospischil
, and
T.
Mueller
, “
Mechanisms of photoconductivity in atomically thin MoS2
,”
Nano Lett.
14
(
11
),
6165
6170
(
2014
).
58.
A.
Di Bartolomeo
,
L.
Genovese
,
T.
Foller
,
F.
Giubileo
,
G.
Luongo
,
L.
Croin
,
S.-J.
Liang
,
L.
Ang
, and
M.
Schleberger
, “
Electrical transport and persistent photoconductivity in monolayer MoS2 phototransistors
,”
Nanotechnology
28
(
21
),
214002
(
2017
).
59.
A.
George
,
M.
Fistul
,
M.
Gruenewald
,
D.
Kaiser
,
T.
Lehnert
,
R.
Mupparapu
,
C.
Neumann
,
U.
Hübner
,
M.
Schaal
,
N.
Masurkar
,
L. M. R.
Arava
,
I.
Staude
,
U.
Kaiser
,
T.
Fritz
, and
A.
Turchanin
, “
Giant persistent photoconductivity in monolayer MoS2 field-effect transistors
,”
NPJ 2D Mater. Appl.
5
(
1
),
15
(
2021
).
60.
Y.
Wang
,
Z.
He
,
J.
Zhang
,
H.
Liu
,
X.
Lai
,
B.
Liu
,
Y.
Chen
,
F.
Wang
, and
L.
Zhang
, “
UV illumination enhanced desorption of oxygen molecules from monolayer MoS2 surface
,”
Nano Res.
13
(
2
),
358
365
(
2020
).
61.
S.
Ramu
,
T.
Chandrakalavathi
,
G.
Murali
,
K. S.
Kumar
,
A.
Sudharani
,
M.
Ramanadha
,
K. R.
Peta
,
R.
Jeyalakshmi
, and
R.
Vijayalakshmi
, “
UV enhanced no gas sensing properties of the MoS2 monolayer gas sensor
,”
Mater. Res. Express
6
(
8
),
085075
(
2019
).
62.
P.
Zhou
,
C.
Chen
,
X.
Wang
,
B.
Hu
, and
H.
San
, “
2-dimentional photoconductive MoS2 nanosheets using in surface acoustic wave resonators for ultraviolet light sensing
,”
Sens. Actuators A
271
,
389
397
(
2018
).
63.
Z.
Zhang
and
J. T.
Yates
Jr
, “
Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces
,”
Chem. Rev.
112
(
10
),
5520
5551
(
2012
).
64.
J.
Hall
,
B.
Pielić
,
C.
Murray
,
W.
Jolie
,
T.
Wekking
,
C.
Busse
,
M.
Kralj
, and
T.
Michely
, “
Molecular beam epitaxy of quasi-freestanding transition metal disulphide monolayers on van der Waals substrates: A growth study
,”
2D Mater.
5
(
2
),
025005
(
2018
).
You do not currently have access to this content.