Both shock and shockless compression experiments were performed on laser powder bed fusion (LPBF) Ti–5Al–5V–5Mo–3Cr (Ti-5553) to peak compressive stresses near 15 GPa. Experiments were performed on the as-built material, containing a purely β (body centered cubic) microstructure, and two differing heat treatments resulting in a dual phase α (hexagonal close packed) and β microstructure. The Hugoniot, Hugoniot elastic limit (HEL), and spallation strength were measured and compared to wrought Ti-6Al-4V (Ti-64). The results indicate the LPBF Ti-5553 Hugoniot response is similar between heat treatments and to Ti-64. The HEL stress observed in the LPBF Ti-5553 was considerably higher than Ti-64, with the as-built, fully β alloy exhibiting the largest values. The spallation strength of the LPBF Ti-5553 was also similar to Ti-64. Clear evidence of initial porosity serving as initiation sites for spallation damage was observed when comparing computed tomography measurements before and after loading. Post-mortem scanning electron microscopy images of the recovered spallation samples showed no evidence of retained phase changes near the spall plane. The spall plane was found to have kinks aligned with the loading direction near areas with large concentrations of twin-like, crystallographic defects in the as-built condition. For the heat-treated samples, the concentrations of twin-like, crystallographic defects were absent, and no preference for failure at the interface between the α and β phases was observed.

1.
R. R.
Boyer
, “
An overview on the use of titanium in the aerospace industry
,”
Mat. Sci. Eng. A
213
,
103
(
1996
).
2.
G.
Kasperovich
and
J.
Hausmann
, “
Improvements of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting
,”
J. Mater. Process. Tech.
220
,
202
(
2015
).
3.
B.
Vrancken
,
L.
Thijs
,
J. P.
Kruth
, and
J.
Van Humbeek
, “
Heat treatment of Ti6Al4V produced by selective laser melting
,”
J. Alloys Compd.
541
,
177
(
2012
).
4.
P.
Krakhmalev
,
G.
Fredriksson
,
I.
Yadroitsava
,
N.
Kazantseva
,
A.
du Plessis
, and
I.
Yadroitsev
, “
Deformation behavior and microstructure of Ti6Al4V manufactured by SLM
,”
Phys. Procedia
83
,
778
(
2016
).
5.
M.
Simonelli
,
Y. Y.
Tse
, and
C.
Tuck
, “
Microstructure of Ti-6Al-4V produced by selective laser melting
,”
J. Phys. Conf. Ser.
371
,
012084
(
2012
).
6.
V.
Paris
,
A.
Cohen
,
E.
Gudinetsky
,
R.
Hevroni
,
S.
Samuha
,
S.
Osovsky
,
E.
Tiferet
, and
A.
Yosef-Hai
, “
Study of flow stress and spall strength of additively manufactured Ti-6-4 alloy
,”
EPJ Web Conf.
183
,
03003
(
2018
).
7.
H.
Bai
,
H.
Deng
,
L.
Chen
,
X.
Liu
,
X.
Qin
,
D.
Zhang
,
T.
Liu
, and
X.
Cui
, “
Effect of heat treatment on the microstructure and mechanical properties of selective laser-melted Ti64 and Ti-5Al-5Mo-5V-1Cr-1Fe
,”
Metals
11
,
534
(
2021
).
8.
H. D.
Carlton
,
K. D.
Klein
, and
J. W.
Elmer
, “
Evolution of microstructure and mechanical properties of selective laser melted Ti-5Al-5V-5Mo-3Cr after isothermal heat treatments
,”
Sci. Technol. Weld. Join.
24
,
465
(
2019
).
9.
J. C.
Colombo-Pulgarín
,
C. A.
Biffi
,
M.
Vedani
,
D.
Celentano
,
A.
Sánchez-Egea
,
A. D.
Boccardo
, and
J.-P.
Ponthot
, “
Beta titanium alloys processed by laser powder bed fusion: A review
,”
J. Mater. Eng. Perform.
30
,
6365
(
2021
).
10.
N.
Clément
,
A.
Lenain
, and
P.
Jacques
, “
Mechanical property optimization via microstructural control of new metastable beta titanium alloys
,”
JOM
59
,
50
(
2007
).
11.
T. S.
Prithiv
,
Z.
Kloenne
,
D.
Li
,
R.
Shi
,
Y.
Zheng
,
H. L.
Fraser
,
B.
Gault
, and
S.
Antonov
, “
Grain boundary segregation and its implications regarding the formation of the grain boundary α phase in the metastable β-titanium Ti-5Al-5Mo-5V-3Cr alloy
,”
Scripta Mater.
207
,
114320
(
2022
).
12.
N. G.
Jones
,
R. J.
Dashwood
,
D.
Dye
, and
M.
Jackson
, “
Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr
,”
Mat. Sci. Eng. A
490
,
369
(
2008
).
13.
J.
Zhang
,
M.
Bermingham
,
J.
Otte
,
Y.
Liu
, and
M.
Dargusch
, “
Towards uniform and enhanced tensile ductility of additively manufactured Ti-5Al-5Mo-5V-3Cr alloy through designing gradient interlayer deposition time
,”
Scripta Mater.
223
,
115066
(
2023
).
14.
M.
Sen
,
S.
Suman
,
S.
Mukherjee
,
T.
Banerjee
,
S.
Sivaprasad
,
S.
Tarafder
,
A.
Bhattacharjee
, and
S.
Kumar Kar
, “
Low cycle fatigue behavior and deformation mechanism of different microstructures in Ti-5Al-5Mo-5V-3Cr alloy
,”
Int. J. Fatigue
148
,
106238
(
2021
).
15.
A.
Caballero
,
A. E.
Davis
,
J. R.
Kennedy
,
J.
Fellowes
,
A.
Garner
,
S.
Williams
, and
P.
Prangnell
, “
Microstructural characterisation and mechanical properties of Ti-5Al-5V-5Mo-3Cr built by wire and arc additive manufacture
,”
Philos. Mag.
102
,
2256
2281
(
2022
).
16.
T.
Ali
,
L.
Wang
,
X.
Chegn
,
A.
Liu
, and
X.
Xu
, “
Omega phase formation and deformation mechanism in heat treated Ti-5553 alloy under high strain rate compression
,”
Mater. Lett.
236
,
163
(
2019
).
17.
D.
Qin
and
Y.
Li
, “
The role of microstructure and stress state in dynamic mechanical behavior of Ti-5Al-5V-5Mo-3Cr alloy
,”
Mater. Charact.
147
,
421
433
(
2019
).
18.
D.-Y.
Qin
,
Y.-G.
Miao
, and
Y.-L.
Li
, “
Formation of adiabatic shearing band for high-strength Ti-5553 alloy: A dramatic thermoplastic microstructural evolution
,”
Def. Technol.
18
,
2045
2051
(
2022
).
19.
R.
Bobbili
and
V.
Madhu
, “
Constitutive modeling of dynamic flow behavior of Ti-5553 alloy
,”
J. Alloys Compd.
787
,
260
266
(
2019
).
20.
L.
Wang
,
A.
Liu
,
H.
Dai
,
F.
Xu
, and
X.
Min
, “
Shock-induced martensite phase transformation and its effects of metastable near 5553 titanium alloy
,”
EPJ Web Conf.
183
,
03029
(
2018
).
21.
Y.-L.
Wang
,
S.-X.
Hui
,
R.
Liu
, and
W.-J.
YE
, “
Evaluation of dynamic performance and ballistic behavior of Ti-5Al-5Mo-5V-3Cr-1Zr alloy
,”
Trans. Nonferrous Met. Soc. Chin.
25
,
429
(
2015
).
22.
S.
Veeck
,
D.
Lee
,
R.
Boyer
, and
R.
Briggs
, “
The castability of Ti-5553 alloy
,”
Adv. Mater. Process.
162
,
47
(
2004
).
23.
S. P.
Marsh
,
LASL Shock Hugoniot Data
(
University of California Press
,
Berkeley, CA
,
1980
).
24.
D. P.
Dandekar
and
S. V.
Spletzer
, “
Shock response of Ti-6Al-4V
,”
AIP Conf. Proc.
505
,
427
(
2000
).
25.
“MTEX”; see https://mtex-toolbox.github.io/ (2023).
26.
F.
Bachmann
,
R.
Hielscher
, and
H.
Schaeben
, “
Texture analysis with MTEX—Free and open source software toolbox
,”
Solid State Phenom.
160
,
63
(
2010
).
27.
J.
Verhoeven
,
Fundamentals of Physical Metallurgy
(
John Wiley & Sons
,
1975
).
28.
V.
Tong
,
S.
Joseph
,
A. K.
Acherman
,
D.
Dye
, and
T. B.
Britton
, “
Using transmission Kikuchi diffraction to characterise α variants in an α + β titanium alloy
,”
J. Microsc.
267
,
318
(
2017
).
29.
F.
Niessen
,
T.
Nyyssönen
,
A. A.
Gazder
, and
R.
Hielscher
, “
Parent grain reconstruction from partially or fully transformed microstructures in MTEX
,”
J. Appl. Crystallogr.
55
,
180
(
2022
).
30.
L. M.
Barker
and
R. E.
Hollenbach
, “
Shock wave studies of PMMA, fused silica, and sapphire
,”
J. Appl. Phys.
41
,
4208
(
1970
).
31.
R. A.
Graham
and
W. P.
Brooks
, “
Shock-wave compression of sapphire from 15 to 420 kbar. The effects of large anisotropic compressions
,”
J. Phys. Chem. Solids
32
,
2311
(
1971
).
32.
T.
Mashimo
,
Y.
Hanaoka
, and
K.
Nagayama
, “
Elastoplastic properties under shock compression of Al 2O 3 single crystal and polycrystal
,”
J. Appl. Phys.
63
,
327
(
1988
).
33.
S. C.
Jones
,
M. C.
Robinson
, and
Y. M.
Gupta
, “
Ordinary refractive index of sapphire in uniaxial tension and compression along the c axis
,”
J. Appl. Phys.
93
,
1023
(
2003
).
34.
O.
Strand
,
L.
Berzins
,
D.
Goosman
,
W.
Kuhlow
,
P.
Sargis
, and
T.
Whitworth
, “
Velocimetry using heterodyne techniques
,”
Proc. SPIE
5580
,
593
599
(
2005
).
35.
D. H.
Dolan
, “
Extreme measurements with photonic Doppler velocimetry (PDV)
,”
Rev. Sci. Instrum.
91
,
051501
(
2020
).
36.
P. E.
Specht
and
N. P.
Brown
, “
Shock compression response of additively manufactured AlSi 10Mg
,”
J. Appl. Phys.
130
,
245104
(
2021
).
37.
P. E.
Specht
,
W. R.
Reinhart
, and
C. S.
Alexander
, “
Measurement of the Hugoniot and shock-induced phase transition stress in wrought 17-4 H1025 stainless steel
,”
J. Appl. Phys.
131
,
125101
(
2022
).
38.
J. M.
Walsh
and
R. H.
Christian
, “
Equation of state of metals from shock wave measurements
,”
Phys. Rev.
97
,
1544
(
1955
).
39.
G. I.
Kanel
, “
Distortion of the wave profiles in an elastoplastic body upon spalling
,”
J. App. Mech. Tech. Phys.
42
,
358
362
(
2001
).
40.
T.
Antoun
,
L.
Seaman
,
D. R.
Curran
,
G. I.
Kanel
,
S. V.
Razorenov
, and
A. V.
Utkin
,
Spall Fracture
(
Springer-Verlag New York, Inc.
,
2003
).
41.
C. L.
Williams
,
K. T.
Ramesh
, and
D. P.
Dandekar
, “
Spall response of 1100-O aluminum
,”
J. Appl. Phys.
111
,
123528
(
2012
).
42.
D. B.
Reisman
,
B. S.
Stoltzfus
,
W. A.
Stygar
,
K. N.
Austin
,
E. M.
Waisman
,
R. J.
Hickman
,
J.-P.
Davis
,
T. A.
Haill
,
M. D.
Knudson
,
C. T.
Seagle
,
J. L.
Brown
,
D. A.
Goerz
,
R. B.
Spielman
,
J. A.
Goldlust
, and
W. R.
Cravey
, “
Pulsed power accelerator for material physics experiments
,”
Phys. Rev. Spec. Top. Accel. Beams
18
,
090401
(
2015
).
43.
C. A.
Hall
,
J. R.
Asay
,
M. D.
Knudson
,
W. A.
Stygar
,
R. B.
Spielman
,
T. D.
Pointon
,
D. B.
Reisman
,
A.
Toor
, and
R. C.
Cauble
, “
Experimental configuration for isentropic compression of solids using pulsed magnetic loading
,”
Rev. Sci. Instrum.
72
,
3587
3595
(
2001
).
44.
N. P.
Brown
,
P. E.
Specht
, and
J. L.
Brown
, “
Quasi-isentropic compression of an additively manufactured aluminum alloy to 14.8 GPa
,”
J. Appl. Phys.
132
,
225106
(
2022
).
45.
J.-P.
Davis
, “
Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa
,”
J. Appl. Phys.
99
,
103512
(
2006
).
46.
“High-pressure shock compression of solids,” edited by J. R. Asay and M. Shahinpoor (Springer-Verlag New York, Inc., 1993).
47.
D. B.
Hayes
,
C. A.
Hall
,
J. R.
Asay
, and
M. D.
Knudson
, “
Measurement of the compression isentrope for 6061-T6 aluminum to 185 GPa and 46% volumetric strain using pulsed magnetic loading
,”
J. Appl. Phys.
96
,
5520
5527
(
2004
).
48.
L. M.
Barker
and
R. E.
Hollenbach
, “
Laser interferometer for measuring high velocities of any reflecting surface
,”
J. Appl. Phys.
43
,
4669
(
1972
).
49.
B. M.
LaLone
,
O. V.
Fat’yanov
,
J. R.
Asay
, and
Y. M.
Gupta
, “
Velocity correction and refractive index changes for [100] lithium fluoride optical windows under shock compression, recompression, and unloading
,”
J. Appl. Phys.
103
,
093505
(
2008
).
50.
J. L.
Brown
,
C. S.
Alexander
,
J. R.
Asay
,
T. J.
Vogler
, and
J. L.
Ding
, “
Extracting strength from high pressure ramp-release experiments
,”
J. Appl. Phys.
114
,
223518
(
2013
).
51.
J. L.
Brown
,
C. S.
Alexander
,
J. R.
Asay
,
T. J.
Vogler
,
D. H.
Dolan
, and
J. L.
Belof
, “
Flow strength of tantalum under ramp compression to 250 GPa
,”
J. Appl. Phys.
115
,
043530
(
2014
).
52.
R. W.
Lemke
,
M. D.
Knudson
,
D. E.
Bliss
,
K.
Cochrane
,
J.-P.
Davis
,
A. A.
Giunta
,
H. C.
Harjes
, and
S. A.
Slutz
, “
Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments
,”
J. Appl. Phys.
98
,
073530
(
2005
).
53.
R. W.
Lemke
,
M. D.
Knudson
, and
J.-P.
Davis
, “
Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator
,”
Int. J. Impact Eng.
38
,
480
(
2011
).
54.
J. L.
Brown
,
J.-P.
Davis
, and
C. T.
Seagle
, “
Multi-megabar dynamic strength measurements of Ta, Au, Pt, and Ir
,”
J. Dyn. Behav. Mater.
7
,
196
206
(
2021
).
55.
J.-P.
Davis
,
M. D.
Knudson
,
L.
Shulenburger
, and
S. D.
Crockett
, “
Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures
,”
J. Appl. Phys.
120
,
165901
(
2016
).
56.
A. C.
Mitchell
and
W. J.
Nellis
, “
Shock compression of aluminum, copper, and tantalum
,”
J. Appl. Phys.
52
,
3363
(
1981
).
57.
M.
van Theil
, “Compendium of shock wave data,” Technical Report No. UCRL-50108, Lawrence Livermore Laboratory, 1977.
58.
W. J.
Nellis
,
A. C.
Mitchell
, and
D. A.
Young
, “
Equation-of-state measurements for aluminum, copper, and tantalum in the pressure range 80-44 GPa (0.8-4.4 Mbar)
,”
J. Appl. Phys.
93
,
304
(
2003
).
59.
Q.
Liu
,
X.
Zhou
,
Z.
Zeng
, and
S.
Luo
, “
Sound velocity, equation of state, temperature and melting of LiF single crystals under shock compression
,”
J. Appl. Phys.
117
,
045901
(
2015
).
60.
D. J.
Steinberg
, “Equation of state and strength properties of selected materials,” Technical Report No. UCRL-MA-106439, Lawrence Livermore National Laboratory, 1996.
61.
T.
Ao
,
M. D.
Knudson
,
J. R.
Asay
, and
J.-P.
Davis
, “
Strength of lithium fluoride under shockless compression to 114 GPa
,”
J. Appl. Phys.
106
,
103507
(
2009
).
62.
B. M.
Adams
,
K. R.
Dalbey
,
M. S.
Eldred
,
D. M.
Gay
,
L. P.
Swiler
,
W. J.
Bohnhoff
,
J. P.
Eddy
,
K. H.
Haskell
, and
P. D.
Hough
, “DAKOTA: A multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: Version 5.0, user’s manual,” Technical Report No. SAND2010-2183, Sandia National Laboratories, 2010.
63.
J.-P.
Davis
and
M.
Knudson
, “
Multi-megabar measurements of the principle quasi-isentrope for tantalum
,”
AIP Conf. Proc.
1195
,
673
(
2009
).
64.
A.
Robinson
,
T.
Brunner
,
S.
Carroll
,
R.
Drake
,
C.
Garasi
,
T.
Gardiner
,
T.
Haill
,
H.
Hanshaw
,
D.
Hensinger
,
D.
Labreche
,
R.
Lemke
,
E.
Love
,
C.
Luchini
,
S.
Mosso
,
J.
Niederhaus
,
C.
Ober
,
S.
Petney
,
W.
Rider
,
G.
Scovazzi
,
O.
Strack
,
R.
Summers
,
T.
Trucano
,
V.
Weirs
,
M.
Wong
, and
T.
Voth
, “ALEGRA: An arbitrary Lagrangian-Eulerian multimaterial, multiphysics code,” in Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, Inc., Reno, NV, 2008).
65.
G. I.
Kerley
, “
Theoretical equation of state for aluminum
,”
Int. J. Impact Eng.
5
,
441
449
(
1987
).
66.
J. N.
Johnson
,
R. S.
Hixson
,
G. T.
Gray III
, and
C. E.
Morris
, “
Quasielastic release in shock-compressed solids
,”
J. Appl. Phys.
72
,
429
441
(
1992
).
67.
M. P.
Desjarlais
, “
Practical improvements to the lee-more conductivity near the metal-insulator transition
,”
Contrib. Plasma Phys.
41
,
267
270
(
2001
).
68.
M. P.
Desjarlais
,
J. D.
Kress
, and
L. A.
Collins
, “
Electrical conductivity for warm, dense aluminum plasmas and liquids
,”
Phys. Rev. E
66
,
025401
(
2002
).
69.
S.
Crockett
and
S.
Rudin
, “Lithium fluoride equation of state (SESAME 7271),” Technical Report No. LA-UR-06-8401, Los Alamos National Laboratory, 2006.
70.
J.-P.
Davis
,
J. L.
Brown
,
M. D.
Knudson
, and
R. W.
Lemke
, “
Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum
,”
J. Appl. Phys.
116
,
204903
(
2014
).
71.
G. I.
Kerley
, “Equation of state for titanium and Ti6Al4V alloy,” Technical Report No. SAND 2003-3785, Sandia National Laboratories, 2003.
72.
G.
Zhao
,
X.
Li
, and
N.
Petrinic
, “
Material information and mechanical response of TRIP/TWIP Ti alloys
,”
NPJ Comput. Mater.
7
,
91
(
2021
).
73.
P.
Kalita
,
K. R.
Cochrane
,
M. D.
Knudson
,
T.
Ao
,
C.
Blada
,
J.
Jackson
,
J.
Gluth
,
H.
Hanshaw
, and
E.
Scoglietti
, “
Ti-6Al-4V to over 1.2 TPa: Shock Hugoniot experiments, ab initio calculations and a broad-range multiphase equation of state
,”
Phys. Rev. B
107
,
094101
(
2023
).
74.
P. J.
Hazell
,
G. J.
Appleby-Thomas
,
E.
Wielewski
, and
J. P.
Escobedo
, “
The shock and spall response of three industrially important hexagonal close-packed metals: Magnesium, titanium and zirconium
,”
Phil. Trans. R. Soc. A
372
,
20130204
(
2014
).
75.
A.
Hopkins
and
N. S.
Brar
, “
Hugoniot and shear strength of titanium 6-4 under shock loading
,”
AIP Conf. Proc.
505
,
423
(
2000
).
76.
J. C. F.
Millett
,
G.
Whiteman
,
P.
Taylor
,
G. T.
Gray III
, and
N. K.
Bourne
, “The response of Ti-6Al-4V to one-dimensional shock loading: Variations of shear strength with stress amplitude and orientation,” in Ti-2007 Science and Technology, edited by M. Ninomi, S. Akiyama, M. Ikeda, M. Hagiwara, and K. Maruyama (The Japan Institute of Metals, 2007), pp. 303–306.
77.
P.
Andriot
,
P.
Lalle
, and
J.
Dejean
, “
Quasi-elastic behavior of pure titanium and TA6V4 titanium alloy at high pressure
,”
AIP Conf. Proc.
309
,
1009
(
1994
).
78.
M.
Bevis
and
A.
Crocker
, “
Twinning shears in lattices
,”
Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci.
304
,
123
134
(
1968
).
You do not currently have access to this content.