In this study, we developed a microwave chemical cell for total electron yield soft x-ray absorption spectroscopy (XAS) using synchrotron radiation under microwave irradiation. In addition, in situ XAS measurements of ammonia borane were performed using the device developed. The device comprises a post-wall waveguide housing a sample holder formed within it. Electrons emitted from the sample during soft x-ray irradiation pass through the metal plates of the waveguide and are measured using a picoammeter. Integration of the microwave irradiation structure into a synchrotron radiation beamline, which is a challenge in soft x-ray analysis requiring measurements in a high-vacuum atmosphere, was achieved by miniaturizing the device using 24.125 GHz ISM band microwaves, instead of the typical 2.45 GHz microwaves. Performance of the device was thoroughly assessed through temperature distribution simulation, temperature measurement of water, and evaluation of frequency characteristics. When the sample holder was filled with water and irradiated with 3 W microwaves, the temperature increased to 97 °C, which is close to the boiling point. The in situ XAS measurements performed using this device with ammonia borane/graphite (2:1) powder at the B-K edge during microwave irradiation showed that peaks associated with hydrogen desorption intensified with prolonged microwave exposure. This result indicates that microwave heating in a vacuum and soft x-ray analysis during microwave heating were achieved. The developed microwave chemical cell emerges as a powerful tool, facilitating advancements in our understanding of elementary chemical processes and elucidating microwave-specific effects such as local heating during microwave irradiation.

1.
A.
Kumar
,
Y.
Kuang
,
Z.
Liang
, and
X.
Sun
, “
Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review
,”
Mater. Today Nano
11
,
100076
(
2020
).
2.
A.
Lamaoui
,
J. M.
Palacios-Santander
,
A.
Amine
, and
L.
Cubillana-Aguilera
, “
Fast microwave-assisted synthesis of magnetic molecularly imprinted polymer for sulfamethoxazole
,”
Talanta
232
,
122430
(
2021
).
3.
H. J.
Lee
,
J. H.
Lee
,
H. S.
Moon
,
I. S.
Jang
,
J. S.
Choi
,
J. G.
Yook
, and
H.
Jung
, “
A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules
,”
Sens. Actuators, B
169
,
26
31
(
2012
).
4.
M.
Baghbanzadeh
,
L.
Carbone
,
P. D.
Cozzoli
, and
C. O.
Kappe
, “
Microwave-assisted synthesis of colloidal inorganic nanocrystals
,”
Angew. Chem. Int. Ed.
50
,
11312
11359
(
2011
).
5.
Á.
Díaz-Ortiz
,
P.
Prieto
, and
A.
de la Hoz
, “
A critical overview on the effect of microwave irradiation in organic synthesis
,”
Chem. Rec.
19
(
1
),
85
97
(
2019
).
6.
Y.
Liu
,
D.
Guo
,
Y.
Gao
,
B.
Tong
,
Y.
Li
, and
Y.
Zhu
, “
Non-thermal effect of microwave on the chemical structure and luminescence properties of biomass-derived carbon dots via hydrothermal method
,”
Appl. Surf. Sci.
552
,
149503
(
2021
).
7.
M. T. K.
Kubo
,
É. S.
Siguemoto
,
E. S.
Funcia
,
P. E. D.
Augusto
,
S.
Curet
,
L.
Boillereaux
,
S. K.
Sastry
, and
J. A. W.
Gut
, “
Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: A critical review
,”
Curr. Opin. Food Sci.
35
,
36
48
(
2020
).
8.
J.
Archer
,
E.
Li
,
J.
Davis
,
M.
Cameron
,
A.
Rosenfeld
, and
M.
Lerch
, “
High spatial resolution scintillator dosimetry of synchrotron microbeams
,”
Sci. Rep.
9
(
1
),
6873
(
2019
).
9.
W.
Chen
,
D.
Liu
, and
L.
Li
, “
Multiscale characterization of semicrystalline polymeric materials by synchrotron radiation x-ray and neutron scattering
,”
Polym. Cryst.
2
(
2
),
10043
(
2019
).
10.
J.
Ohyama
,
K.
Teramura
,
Y.
Higuchi
,
T.
Shishido
,
Y.
Hitomi
,
K.
Kato
,
H.
Tanida
,
T.
Uruga
, and
T.
Tanaka
, “
In situ observation of nucleation and growth process of gold nanoparticles by quick XAFS spectroscopy
,”
ChemPhysChem
12
(
1
),
127
131
(
2011
).
11.
Z.
Wu
,
Y.
Liu
,
X.
Xing
,
L.
Yao
,
Z.
Chen
,
G.
Mo
,
L.
Zheng
,
Q.
Cai
,
H.
Wang
,
J.
Zhong
,
Y.
Lai
, and
L.
Qian
, “
A novel SAXS/XRD/XAFS combined technique for in situ time-resolved simultaneous measurements
,”
Nano Res.
16
(
1
),
1123
1131
(
2023
).
12.
Q.
Liu
,
M.-R.
Gao
,
Y.
Liu
,
J. S.
Okasinski
,
Y.
Ren
, and
Y.
Sun
, “
Quantifying the nucleation and growth kinetics of microwave nanochemistry enabled by in situ high-energy x-ray scattering
,”
Nano Lett.
16
,
715
720
(
2016
).
13.
M.
Stir
,
K.
Ishizaki
,
S.
Vaucher
, and
R.
Nicula
, “
Mechanism and kinetics of the reduction of magnetite to iron during heating in a microwave E-field maximum
,”
J. Appl. Phys.
105
,
124901
(
2009
).
14.
S.
Vaucher
,
M.
Stir
,
K.
Ishizaki
,
J.-M.
Catala-Civera
, and
R.
Nicula
, “
Reactive synthesis of Ti–Al intermetallics during microwave heating in an E-field maximum
,”
Thermochim. Acta
522
(
1–2
),
151
154
(
2011
).
15.
R.
Nicula
,
K.
Ishizaki
,
M.
Stir
,
J.-M.
Catala-Civera
, and
S.
Vaucher
, “
Microwave energy absorption driven by dynamic structural and magnetization states in Fe85B15 metallic glass ribbons
,”
Appl. Phys. Lett.
95
,
174104
(
2009
).
16.
D. S.
Wragg
,
P. J.
Byrne
,
G.
Giriat
,
B. L.
Ouay
,
R.
Gyepes
,
A.
Harrison
,
A. G.
Whittaker
, and
R. E.
Morris
, “
In situ comparison of ionothermal kinetics under microwave and conventional heating
,”
J. Phys. Chem. C
113
(
48
),
20553
20558
(
2009
).
17.
S.
Özkar
and
R. G.
Finke
, “
Silver nanoparticles synthesized by microwave heating: A kinetic and mechanistic re-analysis and re-interpretation
,”
J. Phys. Chem. C
121
(
49
),
27643
27654
(
2017
).
18.
M.
Loginova
,
A.
Sobachkin
,
A.
Sitnikov
,
V.
Yakovlev
,
A.
Myasnikov
,
M.
Sharafutdinov
,
B.
Tolochko
, and
T.
Golovina
, “
In situ phase formation during high-temperature synthesis in clad mechanocomposites based on the Ti–Al system
,”
J. Synchrotron Radiat.
29
(
3
),
698
710
(
2022
).
19.
M. J.
Zhang
,
Y.
Duan
,
C.
Yin
,
M.
Li
,
H.
Zhong
,
E.
Dooryhee
,
K.
Xu
,
F.
Pan
,
F.
Wang
, and
J.
Bai
, “
Ultrafast solid-liquid intercalation enabled by targeted microwave energy delivery
,”
Sci. Adv.
6
(
51
),
eabd9472
(
2020
).
20.
G. A.
Tompsett
,
B.
Panzarella
,
W. C.
Conner
,
K. S.
Yngvesson
,
F.
Lu
,
S. L.
Suib
,
K. W.
Jones
, and
S.
Bennett
, “
In situ small angle x-ray scattering, wide angle x-ray scattering, and Raman spectroscopy of microwave synthesis
,”
Rev. Sci. Instrum.
77
,
124101
(
2006
).
21.
B.
Panzarella
,
G.
Tompsett
,
C.
Conner William
, and
K.
Jones
, “
In situ SAXS/WAXS of zeolite microwave synthesis: NaY, NaA, and beta zeolites
,”
ChemPhysChem
8
,
357
369
(
2007
).
22.
T.
Ano
,
S.
Tsubaki
,
A.
Liu
,
M.
Matsuhisa
,
S.
Fujii
,
K.
Motokura
,
W. J.
Chun
, and
Y.
Wada
, “
Probing the temperature of supported platinum nanoparticles under microwave irradiation by in situ and operando XAFS
,”
Commun. Chem.
3
(
1
),
86
(
2020
).
23.
C.
Cozzo
,
K.
Ishizaki
,
M. A.
Pouchon
, and
S.
Vaucher
, “
Developing an in situ EXAFS experiment of microwave-induced gelation
,”
J. Sol-Gel Sci. Technol.
78
,
507
513
(
2016
).
24.
F.
Kishimoto
,
T.
Yoshioka
,
R.
Ishibashi
,
H.
Yamada
,
K.
Muraoka
,
H.
Taniguchi
,
T.
Wakihara
, and
K.
Takanabe
, “
Direct microwave energy input on a single cation for outstanding selective catalysis
,”
Sci. Adv.
9
(
33
),
eadi1744
(
2023
).
25.
J.
Cheng
,
Y.
Xiao
,
Y.
Wang
,
Y.
Li
,
X.
Hu
, and
F.
Xu
, “
Discussion on the wrapping phenomenon of Cu-ZnO system by in situ investigation during microwave sintering
,”
Mater. Today Commun.
33
,
104581
(
2022
).
26.
F.
Schott
,
S.
Isaksson
,
E.
Larsson
,
F.
Marone
,
C.
Öhgren
,
M.
Röding
,
S.
Hall
,
N.
Lorén
,
R.
Mokso
, and
B. W.
Raaholt
, “
Structural formation during bread baking in a combined microwave-convective oven determined by sub-second in situ synchrotron x-ray microtomography
,”
Food Res. Int.
173
,
113283
(
2023
).
27.
L.
Shen
,
Y.
Wang
,
J.
Cheng
,
F.
Xu
, and
X.
Zhang
, “
Origin of micro-scale local hotspots during the microwave processing of the YBCO conductive ceramics
,”
Scr. Mater.
216
,
114762
(
2022
).
28.
N.
Nakamura
and
B.
Reeja-Jayan
, “
Synchrotron x-ray characterization of materials synthesized under microwave irradiation
,”
J. Mater. Res.
34
(
1
),
194
205
(
2019
).
29.
J.
Hirokawa
and
M.
Ando
, “
Efficiency of 76-GHz post-wall waveguide-fed parallel-plate slot arrays
,”
IEEE Trans. Antennas Propag.
48
,
1742
(
2000
).
30.
J.
Hirokawa
and
M.
Ando
, “
Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates
,”
IEEE Trans. Antennas Propag.
46
,
625
(
1998
).
31.
K. M.
Raj
and
S.
Chakraborty
, “
PDMS microfluidics: A mini review
,”
J. Appl. Polym. Sci.
137
(
27
),
48958
(
2020
).
32.
N.
Bhattacharjee
,
A.
Urrios
,
S.
Kang
, and
A.
Folch
, “
The upcoming 3D-printing revolution in microfluidics
,”
Lab Chip
16
(
10
),
1720
1742
(
2016
).
33.
M.
Niibe
and
T.
Tokushima
, “
Low energy soft x-ray emission spectrometer at BL-09A in NewSUBARU
,”
AIP Conf. Proc.
1741
,
030042
(
2016
).
34.
O. V.
Komova
,
O. V.
Netskina
,
A. M.
Ozerova
,
G. V.
Odegova
,
S. S.
Arzumanov
, and
V. I.
Simagina
, “
The effect of storage-induced changes in ammonia borane on hydrogen release during its low-temperature thermolysis
,”
Inorganics
7
(
8
),
96
(
2019
).
35.
Y.
Utsumi
,
A.
Yamaguchi
,
T.
Matsumura-Inoue
, and
M.
Kishihara
, “
On-chip synthesis of ruthenium complex by microwave-induced reaction in a microchannel coupled with post-wall waveguide
,”
Sens. Actuators, B
242
,
384
388
(
2017
).
36.
K.
Mitsuyoshi
,
K.
Fujitani
,
A.
Yamaguchi
,
Y.
Utsumi
, and
I.
Ohta
, “
Design and fabrication of PTFE substrate-integrated waveguide butler matrix for short millimeter waves
,”
IEICE Trans. Electron.
106
(
3
),
111
115
(
2023
).
37.
K.
Fujitani
,
M.
Kishihara
,
T.
Nakano
,
R.
Tanaka
,
A.
Yamaguchi
, and
Y.
Utsumi
, “
Development of microfluidic device coupled with post-wall waveguide for microwave heating at 24.125 GHz
,”
Sens. Mater.
33
(
12
),
4399
4408
(
2021
).
38.
C. Y.
Alpaydın
,
S. K.
Gülbay
, and
C. O.
Colpan
, “
A review on the catalysts used for hydrogen production from ammonia borane
,”
Int. J. Hydrogen Energy
45
(
5
),
3414
3434
(
2020
).
39.
Y.
Fan
,
H.
Yang
,
M.
Li
, and
G.
Zou
, “
Evaluation of the microwave absorption property of flake graphite
,”
Mater. Chem. Phys.
115
(
2–3
),
696
698
(
2009
).
40.
M.
Niibe
,
Y.
Haruyama
,
A.
Heya
, and
S.
Ito
, “
Soft x-ray absorption/emission spectroscopy and atomic hydrogen irradiation effect of ammonia borane
,”
J. Surf. Sci. Nanotechnol.
20
(
4
),
226
231
(
2022
).
41.
Y.
Muramatsu
,
H.
Takenaka
,
T.
Oyama
,
T.
Hayashi
,
M. M.
Grush
, and
R. C. C.
Perera
, “
Valence band structure and decay process in the inner-shell excitation of boron oxide
,”
X-Ray Spectrom.
28
,
503
(
1999
).
42.
D. W.
Himmelberger
,
C. W.
Yoon
,
M. E.
Bluhm
,
P. J.
Carroll
, and
L. G.
Sneddon
, “
Base-promoted ammonia borane hydrogen-release
,”
J. Am. Chem. Soc.
131
(
39
),
14101
14110
(
2009
).
43.
S.
Frueh
,
R.
Kellett
,
C.
Mallery
,
T.
Molter
,
W. S.
Willis
,
C.
King’ondu
, and
S. L.
Suib
, “
Pyrolytic decomposition of ammonia borane to boron nitride
,”
Inorg. Chem.
50
(
3
),
783
792
(
2011
).
44.
A. C.
Stowe
,
W. J.
Shaw
,
J. C.
Linehan
,
B.
Schmid
, and
T.
Autrey
, “
In situ solid state 11 B MAS-NMR studies of the thermal decomposition of ammonia borane: Mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material
,”
Phys. Chem. Chem. Phys.
9
(
15
),
1831
1836
(
2007
).
You do not currently have access to this content.