To maximize the capabilities of minimally invasive implantable bioelectronic devices, we must deliver large amounts of power to small implants; however, as devices are made smaller, it becomes more difficult to transfer large amounts of power without a wired connection. Indeed, recent work has explored creative wireless power transfer (WPT) approaches to maximize power density [the amount of power transferred divided by receiver footprint area (length × width)]. Here, we analyzed a model for WPT using magnetoelectric (ME) materials that convert an alternating magnetic field into an alternating voltage. With this model, we identify the parameters that impact WPT efficiency and optimize the power density. We find that improvements in adhesion between the laminated ME layers, clamping, and selection of material thicknesses lead to a power density of 3.1 mW/mm2, which is over four times larger than previously reported for mm-sized wireless bioelectronic implants at a depth of 1 cm or more in tissue. This improved power density allows us to deliver 31 and 56 mW to 10 and 27-mm2 ME receivers, respectively. This total power delivery is over five times larger than similarly sized bioelectronic devices powered by radiofrequency electromagnetic waves, inductive coupling, ultrasound, light, capacitive coupling, or previously reported magnetoelectrics. This increased power density opens the door to more power-intensive bioelectronic applications that have previously been inaccessible using mm-sized battery-free devices.

1.
S. M.
Won
,
L.
Cai
,
P.
Gutruf
, and
J. A.
Rogers
, “
Wireless and battery-free technologies for neuroengineering
,”
Nat. Biomed. Eng.
7,
405
423
(
2021
).
2.
M.
Rezaei
,
E.
Maghsoudloo
,
C.
Bories
,
Y. D.
Koninck
, and
B.
Gosselin
, “
A low-power current-reuse analog front-end for high-density neural recording implants
,”
IEEE Trans. Biomed. Circuits Syst.
12
(
2
),
271
280
(
2018
).
3.
D. A.
Borton
,
M.
Yin
,
J.
Aceros
, and
A.
Nurmikko
, “
An implantable wireless neural interface for recording cortical circuit dynamics in moving primates
,”
J. Neural Eng.
10
(
2
),
026010
(
2013
).
4.
D. A.
Schwarz
,
M. A.
Lebedev
,
T. L.
Hanson
,
D. F.
Dimitrov
,
G.
Lehew
,
J.
Meloy
,
S.
Rajangam
,
V.
Subramanian
,
P. J.
Ifft
,
Z.
Li
,
A.
Ramakrishnan
,
A.
Tate
,
K. Z.
Zhuang
, and
M. A. L.
Nicolelis
, “
Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys
,”
Nat. Methods
11
(
6
),
670
676
(
2014
).
5.
S.-Y.
Park
,
J.
Cho
,
K.
Lee
, and
E.
Yoon
, “
Dynamic power reduction in scalable neural recording interface using spatiotemporal correlation and temporal sparsity of neural signals
,”
IEEE J. Solid-State Circuits
53
(
4
),
1102
1114
(
2018
).
6.
X.
Wu
,
I.
Lee
,
Q.
Dong
,
K.
Yang
,
D.
Kim
,
J.
Wang
,
Y.
Peng
,
Y.
Zhang
,
M.
Saligane
,
M.
Yasuda
,
K.
Kumeno
,
F.
Ohno
,
S.
Miyoshi
,
M.
Kawaminami
,
D.
Sylvester
, and
D.
Blaauw
, in
2018 IEEE Symposium on VLSI Circuits
(
IEEE
,
2018
), pp.
191
192
.
7.
A.
Zhou
,
S. R.
Santacruz
,
B. C.
Johnson
,
G.
Alexandrov
,
A.
Moin
,
F. L.
Burghardt
,
J. M.
Rabaey
,
J. M.
Carmena
, and
R.
Muller
, “
A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates
,”
Nat. Biomed. Eng.
3
(
1
),
15
26
(
2019
).
8.
V.
Sivaji
,
D. W.
Grasse
,
S. A.
Hays
,
J. E.
Bucksot
,
R.
Saini
,
M. P.
Kilgard
, and
R. L.
Rennaker
, “
Restore: A wireless peripheral nerve stimulation system
,”
J. Neurosci. Methods
320
,
26
36
(
2019
).
9.
G.
Yao
,
L.
Kang
,
J.
Li
,
Y.
Long
,
H.
Wei
,
C. A.
Ferreira
,
J. J.
Jeffery
,
Y.
Lin
,
W.
Cai
, and
X.
Wang
, “
Effective weight control via an implanted self-powered vagus nerve stimulation device
,”
Nat. Commun.
9
(
1
),
5349
(
2018
).
10.
X.
Liu
,
B.
Subei
,
M.
Zhang
,
A. G.
Richardson
,
T. H.
Lucas
, and
J.
Van der Spiegel
, in
2014 IEEE International Symposium on Circuits Systems (ISCAS), Melbourne, VIC, Australia
(
IEEE
,
2014
), pp.
650
653
.
11.
A. D.
Mickle
,
S. M.
Won
,
K. N.
Noh
,
J.
Yoon
,
K. W.
Meacham
,
Y.
Xue
,
L. A.
McIlvried
,
B. A.
Copits
,
V. K.
Samineni
,
K. E.
Crawford
,
D. H.
Kim
,
P.
Srivastava
,
B. H.
Kim
,
S.
Min
,
Y.
Shiuan
,
Y.
Yun
,
M. A.
Payne
,
J.
Zhang
,
H.
Jang
,
Y.
Li
,
H. H.
Lai
,
Y.
Huang
,
S.-I.
Park
,
R. W.
Gereau
, and
J. A.
Rogers
, “
A wireless closed-loop system for optogenetic peripheral neuromodulation
,”
Nature
565
(
7739
),
361
365
(
2019
).
12.
J. T.
Paz
,
T. J.
Davidson
,
E. S.
Frechette
,
B.
Delord
,
I.
Parada
,
K.
Peng
,
K.
Deisseroth
, and
J. R.
Huguenard
, “
Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury
,”
Nat. Neurosci.
16
(
1
),
64
70
(
2013
).
13.
Y. S.
Choi
,
H.
Jeong
,
R. T.
Yin
,
R.
Avila
,
A.
Pfenniger
,
J.
Yoo
,
J. Y.
Lee
,
A.
Tzavelis
,
Y. J.
Lee
,
S. W.
Chen
,
H. S.
Knight
,
S.
Kim
,
H.-Y.
Ahn
,
G.
Wickerson
,
A.
Vázquez-Guardado
,
E.
Higbee-Dempsey
,
B. A.
Russo
,
M. A.
Napolitano
,
T. J.
Holleran
,
L. A.
Razzak
,
A. N.
Miniovich
,
G.
Lee
,
B.
Geist
,
B.
Kim
,
S.
Han
,
J. A.
Brennan
,
K.
Aras
,
S. S.
Kwak
,
J.
Kim
,
E. A.
Waters
,
X.
Yang
,
A.
Burrell
,
K.
San Chun
,
C.
Liu
,
C.
Wu
,
A. Y.
Rwei
,
A. N.
Spann
,
A.
Banks
,
D.
Johnson
,
Z. J.
Zhang
,
C. R.
Haney
,
S. H.
Jin
,
A. V.
Sahakian
,
Y.
Huang
,
G. D.
Trachiotis
,
B. P.
Knight
,
R. K.
Arora
,
I. R.
Efimov
, and
J. A.
Rogers
, “
A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy
,”
Science
376
(
6596
),
1006
1012
(
2022
).
14.
G.
Bhave
,
J. C.
Chen
,
A.
Singer
,
A.
Sharma
, and
J. T.
Robinson
, “
Distributed sensor and actuator networks for closed-loop bioelectronic medicine
,”
Mater. Today
46
,
125
135
(
2021
).
15.
J. C.
Chen
,
P.
Kan
,
Z.
Yu
,
F.
Alrashdan
,
R.
Garcia
,
A.
Singer
,
C. S. E.
Lai
,
B.
Avants
,
S.
Crosby
,
Z.
Li
,
B.
Wang
,
M. M.
Felicella
,
A.
Robledo
,
A. V.
Peterchev
,
S. M.
Goetz
,
J. D.
Hartgerink
,
S. A.
Sheth
,
K.
Yang
, and
J. T.
Robinson
, “
A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves
,”
Nat. Biomed. Eng.
6
(
6
),
706
716
(
2022
).
16.
C.
Shi
,
V.
Andino-Pavlovsky
,
S. A.
Lee
,
T.
Costa
,
J.
Elloian
,
E. E.
Konofagou
, and
K. L.
Shepard
, “
Application of a sub-0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing
,”
Sci. Adv.
7
(
19
),
eabf6312
(
2021
).
17.
A. J.
Cortese
,
C. L.
Smart
,
T.
Wang
,
M. F.
Reynolds
,
S. L.
Norris
,
Y.
Ji
,
S.
Lee
,
A.
Mok
,
C.
Wu
,
F.
Xia
,
N. I.
Ellis
,
A. C.
Molnar
,
C.
Xu
, and
P. L.
McEuen
, “
Microscopic sensors using optical wireless integrated circuits
,”
Proc. Natl. Acad. Sci.
117
(
17
),
9173
9179
(
2020
).
18.
A.
Khalifa
,
Y.
Liu
,
Y.
Karimi
,
Q.
Wang
,
A.
Eisape
,
M.
Stanacevic
,
N.
Thakor
,
Z.
Bao
, and
R.
Etienne-Cummings
, “
The Microbead: A 0.009 mm3 implantable wireless neural stimulator
,”
IEEE Trans. Biomed. Circuits Syst.
13
(
5
),
971
985
(
2019
).
19.
A.
Singer
and
J. T.
Robinson
, “
Wireless power delivery techniques for miniature implantable bioelectronics
,”
Adv. Healthc. Mater.
10
(
17
),
2100664
(
2021
).
20.
G. L.
Barbruni
,
P. M.
Ros
,
D.
Demarchi
,
S.
Carrara
, and
D.
Ghezzi
, “
Miniaturised wireless power transfer systems for neurostimulation: A review
,”
IEEE Trans. Biomed. Circuits Syst.
14
(
6
),
1160
1178
(
2020
).
21.
A.
Khalifa
,
S.
Lee
,
A. C.
Molnar
, and
S.
Cash
, “
Injectable wireless microdevices: Challenges and opportunities
,”
Bioelectron. Med.
7
(
1
),
19
(
2021
).
22.
T.
Nan
,
H.
Lin
,
Y.
Gao
,
A.
Matyushov
,
G.
Yu
,
H.
Chen
,
N.
Sun
,
S.
Wei
,
Z.
Wang
,
M.
Li
,
X.
Wang
,
A.
Belkessam
,
R.
Guo
,
B.
Chen
,
J.
Zhou
,
Z.
Qian
,
Y.
Hui
,
M.
Rinaldi
,
M. E.
McConney
,
B. M.
Howe
,
Z.
Hu
,
J. G.
Jones
,
G. J.
Brown
, and
N. X.
Sun
, “
Acoustically actuated ultra-compact NEMS magnetoelectric antennas
,”
Nat. Commun.
8
(
1
),
296
(
2017
).
23.
D.
Mukherjee
and
D.
Mallick
, “
A self-biased, low-frequency, miniaturized magnetoelectric antenna for implantable medical device applications
,”
Appl. Phys. Lett.
122
(
1
),
014102
(
2023
).
24.
D.
Das
,
M.
Nasrollahpour
,
Z.
Xu
,
M.
Zaeimbashi
,
I.
Martos-Repath
,
A.
Mittal
,
A.
Khalifa
,
S. S.
Cash
,
A.
Shrivastava
,
N. X.
Sun
, and
M.
Onabajo
, “
A radio frequency magnetoelectric antenna prototyping platform for neural activity monitoring devices with sensing and energy harvesting capabilities
,”
Electronics
9
(
12
),
2123
(
2020
).
25.
A.
Singer
,
S.
Dutta
,
E.
Lewis
,
Z.
Chen
,
J. C.
Chen
,
N.
Verma
,
B.
Avants
,
A. K.
Feldman
,
J.
O’Malley
,
M.
Beierlein
,
C.
Kemere
, and
J. T.
Robinson
, “
Magnetoelectric materials for miniature, wireless neural stimulation at therapeutic frequencies
,”
Neuron
107
(
4
),
631
643.e5
(
2020
).
26.
A.
Khalifa
,
M.
Nasrollahpour
,
N.
Sun
,
M.
Zaeimbashi
,
H.
Chen
,
X.
Liang
,
M.
Alemohammad
,
R.
Etienne-Cummings
,
N. X.
Sun
, and
S.
Cash
, in
2021 IEEE Wireless Power Transfer Conference (WPTC), San Diego, CA, USA
(
IEEE
,
2021
), pp.
1
4
.
27.
M.
Zaeimbashi
,
H.
Lin
,
C.
Dong
,
X.
Liang
,
M.
Nasrollahpour
,
H.
Chen
,
N.
Sun
,
A.
Matyushov
,
Y.
He
,
X.
Wang
,
C.
Tu
,
Y.
Wei
,
Y.
Zhang
,
S. S.
Cash
,
M.
Onabajo
,
A.
Shrivastava
, and
N.
Sun
, “
NanoNeuroRFID: A wireless implantable device based on magnetoelectric antennas
,”
IEEE J. Electromagn. RF Microw. Med. Biol.
3
(
3
),
206
215
(
2019
).
28.
F. T.
Alrashdan
,
J. C.
Chen
,
A.
Singer
,
B. W.
Avants
,
K.
Yang
, and
J. T.
Robinson
, “
Wearable wireless power systems for ‘ME-BIT’ magnetoelectric-powered bio implants
,”
J. Neural Eng.
18
(
4
),
045011
(
2021
).
29.
B. D.
Truong
and
S.
Roundy
, “
Experimentally validated model and power optimization of a magnetoelectric wireless power transfer system in free-free configuration
,”
Smart Mater. Struct.
29
(
8
),
085053
(
2020
).
30.
L.
Bian
,
Y.
Wen
,
P.
Li
,
Q.
Gao
,
Y.
Zhu
, and
M.
Yu
, “
Magnetoelectric performances in composite of piezoelectric ceramic and ferromagnetic constant-elasticity alloy
,”
IEEE Sens. J.
9
(
12
),
1620
1626
(
2009
).
31.
L.
Bian
,
Y.
Wen
,
P.
Li
,
Q.
Gao
, and
M.
Zheng
, “
Magnetoelectric transducer with high quality factor for wireless power receiving
,”
Sens. Actuators, A
150
(
2
),
207
211
(
2009
).
32.
F.
Yang
,
Y. M.
Wen
,
P.
Li
,
M.
Zheng
, and
L. X.
Bian
, “
Resonant magnetoelectric response of magnetostrictive/piezoelectric laminate composite in consideration of losses
,”
Sens. Actuators, A
141
(
1
),
129
135
(
2008
).
33.
S.
Dong
,
J.
Cheng
,
J. F.
Li
, and
D.
Viehland
, “
Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under resonant drive
,”
Appl. Phys. Lett.
83
(
23
),
4812
4814
(
2003
).
34.
B. D.
Truong
, “
Power optimization of a magnetoelectric wireless power transfer system with volume constraint
,”
Sens. Actuators, A
341
,
113226
(
2022
).
35.
S.
Han
and
D. D.
Wentzloff
, in
Proceedings of IEEE 2012 Custom Integrated Circuits Conference, San Jose, CA, USA
(
IEEE
,
2012
), pp.
1
4
.
36.
M. J.
Casiano
, “Extracting damping ratio from dynamic data and numerical solutions,” NASA Report NASA/TM-2016-218227, 2016.
37.
Z.
Fang
,
S. G.
Lu
,
F.
Li
,
S.
Datta
,
Q. M.
Zhang
, and
M. E.
Tahchi
, “
Enhancing the magnetoelectric response of Metglas/polyvinylidene fluoride laminates by exploiting the flux concentration effect
,”
Appl. Phys. Lett.
95
(
11
),
112903
(
2009
).
38.
Z.
Yu
,
J. C.
Chen
,
F. T.
Alrashdan
,
B. W.
Avants
,
Y.
He
,
A.
Singer
,
J. T.
Robinson
, and
K.
Yang
, “
MagNI: A magnetoelectrically powered and controlled wireless neurostimulating implant
,”
IEEE Trans. Biomed. Circuits Syst.
14
(
6
),
1241
1252
(
2020
).
39.
M.
Silva
,
S.
Reis
,
C. S.
Lehmann
,
P.
Martins
,
S.
Lanceros-Mendez
,
A.
Lasheras
,
J.
Gutiérrez
, and
J. M.
Barandiarán
, “
Optimization of the magnetoelectric response of poly(vinylidene fluoride)/epoxy/Vitrovac laminates
,”
ACS Appl. Mater. Interfaces
5
(
21
),
10912
10919
(
2013
).
40.
M.
Li
,
D.
Berry
,
J.
Das
,
D.
Gray
,
J.
Li
, and
D.
Viehland
, “
Enhanced sensitivity and reduced noise floor in magnetoelectric laminate sensors by an improved lamination process
,”
J. Am. Ceram. Soc.
94
(
11
),
3738
3741
(
2011
).
41.
Y.
Wang
,
D.
Gray
,
D.
Berry
,
M.
Li
,
J.
Gao
,
J.
Li
, and
D.
Viehland
, “
Influence of interfacial bonding condition on magnetoelectric properties in piezofiber/Metglas heterostructures
,”
J. Alloys Compd.
513
,
242
244
(
2012
).
42.
M.
Karmarkar
,
S.
Dong
,
J.
Li
,
D.
Viehland
, and
S.
Priya
, “
Magnetoelectric laminate based DC magnetic field sensor
,”
Phys. Status Solidi RRL
2
(
3
),
108
110
(
2008
).
43.
E.
Freeman
,
J.
Harper
,
N.
Goel
,
I.
Gilbert
,
J.
Unguris
,
S. J.
Schiff
, and
S.
Tadigadapa
, “
Improving the magnetoelectric performance of Metglas/PZT laminates by annealing in a magnetic field
,”
Smart Mater. Struct.
26
(
8
),
085038
(
2017
).
44.
E.
Freeman
,
J.
Harper
,
N.
Goel
,
S. J.
Schiff
, and
S.
Tadigadapa
, in
2016 IEEE Sensors, Orlando, FL, USA
(
IEEE
,
2016
), pp.
1
3
.
45.
X.
Wang
,
X.
Yuan
,
M.
Wu
,
F.
Gao
,
X.
Yan
,
K.
Zhou
, and
D.
Zhang
, “
Effect of epoxy resin on the actuating performance of piezoelectric fiber composites
,”
Sensors
19
(
8
),
1809
(
2019
).
46.
H.
Lee
,
R.
Sriramdas
,
P.
Kumar
,
M.
Sanghadasa
,
M. G.
Kang
, and
S.
Priya
, “
Maximizing power generation from ambient stray magnetic fields around smart infrastructures enabling self-powered wireless devices
,”
Energy Environ. Sci.
13
(
5
),
1462
1472
(
2020
).
47.
J.
Zhang
,
A.
Khalifa
,
S.
Spetalnick
,
M.
Alemohammad
,
J.
Rattray
,
C. S.
Thakur
,
A.
Eisape
, and
R.
Etienne-Cummings
, in
2020 42nd Annual International Conference on IEEE Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada
(
IEEE
,
2020
), pp.
3403
3406
.
48.
P.
Feng
,
P.
Yeon
,
Y.
Cheng
,
M.
Ghovanloo
, and
T. G.
Constandinou
, “
Chip-scale coils for millimeter-sized bio-implants
,”
IEEE Trans. Biomed. Circuits Syst.
12
(
5
),
1088
1099
(
2018
).
49.
G. E.
Loeb
,
R. A.
Peck
,
W. H.
Moore
, and
K.
Hood
, “
BIONTM system for distributed neural prosthetic interfaces
,”
Med. Eng. Phys.
23
(
1
),
9
18
(
2001
).
50.
S.
Obaid
and
L.
Lu
, “
Highly efficient microscale gallium arsenide solar cell arrays as optogenetic power options
,”
IEEE Photonics J
11
(
1
),
1
8
(
2019
).
51.
T. C.
Chang
,
M. J.
Weber
,
J.
Charthad
,
S.
Baltsavias
, and
A.
Arbabian
, “
End-to-end design of efficient ultrasonic power links for scaling towards submillimeter implantable receivers
,”
IEEE Trans. Biomed. Circuits Syst.
12
(
5
),
1100
1111
(
2018
).
52.
J.
Charthad
,
T. C.
Chang
,
Z.
Liu
,
A.
Sawaby
,
M. J.
Weber
,
S.
Baker
,
F.
Gore
,
S. A.
Felt
, and
A.
Arbabian
, “
A mm-sized wireless implantable device for electrical stimulation of peripheral nerves
,”
IEEE Trans. Biomed. Circuits Syst.
12
(
2
),
257
270
(
2018
).
53.
H.
Rahmani
and
A.
Babakhani
, in
2017 IEEE MTT-International Microwave Symposium (IMS)
(
IEEE
,
2017
), pp.
300
303
.
54.
D. R.
Agrawal
,
Y.
Tanabe
,
D.
Weng
,
A.
Ma
,
S.
Hsu
,
S.-Y.
Liao
,
Z.
Zhen
,
Z.-Y.
Zhu
,
C.
Sun
,
Z.
Dong
,
F.
Yang
,
H. F.
Tse
,
A. S. Y.
Poon
, and
J. S.
Ho
, “
Conformal phased surfaces for wireless powering of bioelectronic microdevices
,”
Nat. Biomed. Eng.
1
(
3
),
0043
(
2017
).
55.
K. L.
Montgomery
,
A. J.
Yeh
,
J. S.
Ho
,
V.
Tsao
,
S. M.
Iyer
,
L.
Grosenick
,
E. A.
Ferenczi
,
Y.
Tanabe
,
K.
Deisseroth
,
S. L.
Delp
, and
A. S. Y.
Poon
, “
Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice
,”
Nat. Methods
12
(
10
),
969
974
(
2015
).
56.
S. I.
Park
,
G.
Shin
,
J. G.
McCall
,
R.
Al-Hasani
,
A.
Norris
,
L.
Xia
,
D. S.
Brenner
,
K. N.
Noh
,
S. Y.
Bang
,
D. L.
Bhatti
,
K.-I.
Jang
,
S.-K.
Kang
,
A. D.
Mickle
,
G.
Dussor
,
T. J.
Price
,
R. W.
Gereau
,
M. R.
Bruchas
, and
J. A.
Rogers
, “
Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics
,”
Proc. Natl. Acad. Sci.
113
(
50
),
E8169
(
2016
).
57.
P.
Gutruf
,
V.
Krishnamurthi
,
A.
Vázquez-Guardado
,
Z.
Xie
,
A.
Banks
,
C.-J.
Su
,
Y.
Xu
,
C. R.
Haney
,
E. A.
Waters
,
I.
Kandela
,
S. R.
Krishnan
,
T.
Ray
,
J. P.
Leshock
,
Y.
Huang
,
D.
Chanda
, and
J. A.
Rogers
, “
Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research
,”
Nat. Electron.
1
(
12
),
652
660
(
2018
).
58.
Y.
Jia
,
S. A.
Mirbozorgi
,
Z.
Wang
,
C.-C.
Hsu
,
T. E.
Madsen
,
D.
Rainnie
, and
M.
Ghovanloo
, “
Position and orientation insensitive wireless power transmission for EnerCage-Homecage System
,”
IEEE Trans. Biomed. Eng.
64
(
10
),
2439
2449
(
2017
).

Supplementary Material

You do not currently have access to this content.