One-to-many wireless power transfer (WPT) is one of the leading directions in WPT systems development due to the rapid growth of consumer devices. The most challenging task is to ensure high efficiency for free-positioned receivers and provide low-cost compact WPT systems. In this paper, a transmitting metasurface-based resonator for one-to-many WPT systems is proposed and experimentally studied. The resonator design and matching method provides the self-tuning ability and allows to simplify the control and communication units of WPT systems. The resonator is composed of periodically arranged unit-cells, implemented as two crossed conductors separated by a thick substrate with a 330 pF capacitor mounted at the cross-hair of the conductors. The prototype of the proposed metasurface-based resonator is fabricated and experimentally studied for free-positioned single- and multi-receivers. The WPT efficiency to a free-positioned receiver varies from 19.7% to 84.8%. The overall efficiency for a three-receiver case reaches 83.2% which is suitable for one-to-many WPT systems.

1.
C.
Jiang
,
K. T.
Chau
,
C.
Liu
, and
C. H.
Lee
, “
An overview of resonant circuits for wireless power transfer
,”
Energies
10
(
7
),
894
(
2017
).
2.
AirFuel Alliance (2018). “AirFuel Alliance resonant wireless power transfer (WPT) system baseline system specification (BSS),” V. 2.00, AirFuel Alliance, Digital file. https://airfuel.org/airfuel-resonant/
3.
M.
Song
,
P.
Jayathurathnage
,
E.
Zanganeh
,
M.
Krasikova
,
P.
Smirnov
,
P.
Belov
,
P.
Kapitanova
,
C.
Simovski
,
S.
Tretyakov
, and
A.
Krasnok
, “
Wireless power transfer based on novel physical concepts
,”
Nat. Electron.
4
(
10
),
707
716
(
2021
).
4.
Z.
Zhang
,
H.
Pang
,
A.
Georgiadis
, and
C.
Cecati
, “
Wireless power transfer—An overview
,”
IEEE Trans. Industrial Electron.
66
(
2
),
1044
1058
(
2019
).
5.
Wireless Power Consortium (2021). “Qi Specification,” V. 1.3, Wireless Power Consortium, Inc., Digital file. https://www.wirelesspowerconsortium.com/knowledge-base/specifications/download-the-qi-specifications.html
6.
J.
Li
,
R.
Qin
,
J.
Sun
, and
D.
Costinett
, “
Systematic design of a 100-W 6.78-MHz wireless charging station covering multiple devices and a large charging area
,”
IEEE Trans. Power Electron.
37
(
4
),
4877
4889
(
2022
).
7.
S. Y.
Hui
, “
Planar wireless charging technology for portable electronic products and Qi
,”
Proc. IEEE
101
(
6
),
1290
1301
(
2013
).
8.
M. S. M.
Mollaei
,
P.
Jayathurathnage
,
S. A.
Tretyakov
, and
C. R.
Simovski
, “
High-impedance wireless power transfer transmitter coils for freely positioning receivers
,”
IEEE Access
9
,
42994
43000
(
2021
).
9.
X.
Dang
,
P.
Jayathurathnage
,
S. A.
Tretyakov
, and
C. R.
Simovski
, “
Self-tuning multi-transmitter wireless power transfer to freely positioned receivers
,”
IEEE Access
8
,
119940
119950
(
2020
).
10.
Q.
Xu
,
Q.
Hu
,
H.
Wang
,
Z. H.
Mao
, and
M.
Sun
, “
Optimal design of planar spiral coil for uniform magnetic field to wirelessly power position-free targets
,”
IEEE Trans. Magn.
57
(
2
),
4000709
(
2021
).
11.
A. P.
Sample
,
D. A.
Meyer
, and
J. R.
Smith
, “
Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer
,”
IEEE Trans. Ind. Electron.
58
(
2
),
544
554
(
2011
).
12.
A.
Trivino-Cabrera
and
J. A.
Aguado Sánchez
, “
A review on the fundamentals and practical implementation details of strongly coupled magnetic resonant technology for wireless power transfer
,”
Energies
11
(
10
),
2844
(
2018
).
13.
International Commission on Non-Ionizing Radiation Protection (ICNIRP)
, “
Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz)
,”
Health Phys.
118
(
5
),
483
524
(
2020
).
14.
R.
Kudo
,
K.
Hachiya
,
T.
Kanamoto
, and
A.
Kurokawa
, “A parabolic spiral coil transmitter for charging multiple receivers,” in 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE) (IEEE, 2023), pp. 224–225.
15.
W.
Adepoju
,
I.
Bhattacharya
,
M.
Sanyaolu
,
M. E.
Bima
,
T.
Banik
,
E. N.
Esfahani
, and
O.
Abiodun
, “
Critical review of recent advancement in metamaterial design for wireless power transfer
,”
IEEE Access
10
,
42699
42726
(
2022
).
16.
C.
Rong
,
C.
Lu
,
Y.
Zeng
,
X.
Tao
,
X.
Liu
,
R.
Liu
,
X.
He
, and
M.
Liu
, “
A critical review of metamaterial in wireless power transfer system
,”
IET Power Electron.
14
(
9
),
1541
1559
(
2021
).
17.
W.
Lee
and
Y. K.
Yoon
, “
Wireless power transfer systems using metamaterials: A review
,”
IEEE Access
8
,
147930
147947
(
2020
).
18.
V.
Lazzoni
,
D.
Brizi
, and
A.
Monorchio
, “
Spatial filtering magnetic metasurface for misalignment robustness enhancement in wireless power transfer applications
,”
Sci. Rep.
13
(
1
),
1
14
(
2023
).
19.
W.
Lee
and
Y. K.
Yoon
, “
Tunable metamaterial slab for efficiency improvement in misaligned wireless power transfer
,”
IEEE Microwave Wireless Compon. Lett.
30
(
9
),
912
915
(
2020
).
20.
E.
Zanganeh
,
A.
Sayanskiy
,
S.
Kosulnikov
, and
P.
Kapitanova
, “
Extreme metasurfaces enable targeted and protected wireless energy transfer
,”
Adv. Mater. Technol.
2202133
,
2202133
(
2023
).
21.
A.
Markvart
,
M.
Song
,
S.
Glybovski
,
P.
Belov
,
C.
Simovski
, and
P.
Kapitanova
, “
Metasurface for near-field wireless power transfer with reduced electric field leakage
,”
IEEE Access
8
,
40224
40231
(
2020
).
22.
C.
Lu
,
C.
Rong
,
X.
Huang
,
Z.
Hu
,
X.
Tao
,
S.
Wang
,
J.
Chen
, and
M.
Liu
, “
Investigation of negative and near-zero permeability metamaterials for increased efficiency and reduced electromagnetic field leakage in a wireless power transfer system
,”
IEEE Trans. Electromagn. Compat.
61
(
5
),
1438
1446
(
2019
).
23.
V.
Vorobyev
,
A.
Shchelokova
,
A.
Efimtcev
,
J. D.
Baena
,
R.
Abdeddaim
,
P.
Belov
,
I.
Melchakova
, and
S.
Glybovski
, “
Improving homogeneity in abdominal imaging at 3 T with light, flexible, and compact metasurface
,”
Magn. Reson. Med.
87
(
1
),
496
508
(
2022
).
24.
V.
Vorobyev
,
A.
Shchelokova
,
I.
Zivkovic
,
A.
Slobozhanyuk
,
J. D.
Baena
,
J. P.
Del Risco
,
R.
Abdeddaim
,
A.
Webb
, and
S.
Glybovski
, “
An artificial dielectric slab for ultra high-field MRI: Proof of concept
,”
J. Magn. Reson.
320
,
106835
(
2020
).
25.
F.
Zhang
,
X.
Liu
,
P.
Kapitanova
, and
M.
Song
, “
Uniform near magnetic field generated by metasurface-based resonator for wireless power transfer
,”
Photonics Nanostruct. Fundam. Appl.
52
,
101056
(
2022
).
26.
T.
Chang
,
J. U.
Kim
,
S. K.
Kang
,
H.
Kim
,
D. K.
Kim
,
Y.-H.
Lee
, and
J.
Shin
, “
Broadband giant-refractive-index material based on mesoscopic space-filling curves
,”
Nat. Commun.
7
(
1
),
12661
(
2016
).
27.
T.
Itoh
and
C.
Caloz
,
Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications
(
John Wiley & Sons
,
2005
).
28.
S.
Liu
,
M.
Liu
,
S.
Yang
,
C.
Ma
, and
X.
Zhu
, “
A novel design methodology for high-efficiency current-mode and voltage-mode class-e power amplifiers in wireless power transfer systems
,”
IEEE Trans. Power Electron.
32
(
6
),
4514
4523
(
2016
).
You do not currently have access to this content.