Second harmonic generation (SHG) is used to characterize the interfaces of centrosymmetric materials typically used in microelectronic/optoelectronic devices. For such applications, the materials are actually multi-layer stacks, and in this case, the SHG can be difficult to interpret and model. This paper presents the theory of the second harmonic light generated from multilayer structures. The focus is on describing the nonlinear boundary conditions at the interfaces between two different materials, taking into account the distinct contributions of bulk and interface regions. Using these conditions, it is possible to calculate the second harmonic signal from any stack of materials. In this paper, we address stacks containing silicon (100) because it is a material with numerous applications. The nonlinear polarization expressions of the surface and bulk of Si(100), according to Sipe et al. [Phys. Rev. B 35, 1129 (1987)], were integrated into nonlinear boundary conditions in order to determine transmitted and reflected second harmonic waves. An analytical validation was performed on the simple case of an air–silicon interface. For multilayered stacks, the model was compared with experimental results obtained on samples corresponding to pragmatic substrates widely used in microelectronic and optoelectronic applications.

1.
G.
Lüpke
,
Surf. Sci. Rep.
35
(
3–4
),
75
161
(
1999
).
2.
Y. R.
Shen
,
Principles of Nonlinear Optics
(Wiley-Interscience, New York, NY,
1984
).
3.
4.
M.
Falasconi
et al,
Surf. Sci.
481
(
1–3
),
105
112
(
2001
).
5.
Y. Q.
An
,
R.
Carriles
, and
M. C.
Downer
,
Phys. Rev. B
75
(24),
241307
(
2007
).
6.
J. I.
Dadap
et al,
Appl. Phys. Lett.
64
(
16
),
2139
2141
(
1994
).
7.
H. W. K.
Tom
,
T. F.
Heinz
, and
Y. R.
Shen
,
Phys. Rev. Lett.
51
(24),
1983
(
1983
).
8.
O. A.
Aktsipetrov
,
I. M.
Baranova
, and
Y. A.
Il’inskii
,
Zh. Eksp. Teor. Fiz
.
91
,
287
297
(
1986
).
9.
T.
Scheidt
et al,
Phys. Rev. B
69
(
16
),
165314
(
2004
).
10.
W.
Wang
et al,
Phys. Rev. Lett.
81
(
19
),
4224
(
1998
).
11.
J. I.
Dadap
et al,
Opt. Lett.
22
(
12
),
901
903
(
1997
).
12.
B.
Jun
et al,
Appl. Phys. Lett.
85
(
15
),
3095
3097
(
2004
).
13.
J. J. H.
Gielis
,
B.
Hoex
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
104
(
7
),
073701
(
2008
).
14.
O. A.
Aktsipetrov
et al,
Opt. Lett.
19
(
18
),
1450
1452
(
1994
).
16.
D.
Damianos
et al,
Solid-State Electron.
143
,
90
96
(
2018
).
17.
D.
Damianos
et al,
J. Appl. Phys.
124
,
12
(
2018
).
18.
N. M.
Terlinden
et al,
J. Appl. Phys.
115
,
3
(
2014
).
19.
G.
Dingemans
et al,
J. Appl. Phys.
110
,
9
(
2011
).
20.
J.
Butet
,
P. F.
Brevet
, and
O. J. F.
Martin
,
ACS Nano
9
(
11
),
10545
10562
(
2015
).
21.
N.
Bloembergen
and
P. S.
Pershan
,
Phys. Rev.
128
(
2
),
606
(
1962
).
22.
N.
Bloembergen
,
R. K.
Chang
, and
C. H.
Lee
,
Phys. Rev. Lett.
16
(
22
),
986
(
1966
).
23.
N.
Bloembergen
et al,
Phys. Rev.
174
(
3
),
813
(
1968
).
24.
P.
Guyot-Sionnest
,
W.
Chen
, and
Y. R.
Shen
,
Phys. Rev. B
33
(
12
),
8254
(
1986
).
25.
J. E.
Sipe
,
D. J.
Moss
, and
H. M.
Van Driel
,
Phys. Rev. B
35
(
3
),
1129
(
1987
).
26.
J. E.
Sipe
,
J. Opt. Soc. Am. B
4
(
4
),
481
489
(
1987
).
27.
T.
Cvitas
and
N.
Kallay
,
J. Chem. Educ.
54
(
9
),
530
(
1977
).
28.
T. F.
Heinz
, in
Nonlinear Surface Electromagnetic Phenomena
, edited by
H.-E.
Ponath
and
G. I.
Stegeman
(
Elsevier Science Publications BV
,
Amsterdam
,
1991
), Vol. 353, p. 1991.
29.
O. A.
Aktsipetrov
,
I. M.
Baranova
, and
K. N.
Evtyukhov
,
Second Order Non-Linear Optics of Silicon and Silicon Nanostructures
(
CRC Press
,
2018
).
30.
D. A.
Kleinman
,
Phys. Rev.
128
(
4
),
1761
(
1962
).
31.
O. A.
Aktsipetrov
et al,
Phys. Rev. B
54
(
3
),
1825
(
1996
).

Supplementary Material

You do not currently have access to this content.