In this work, we report quantitative morphometry of freeze-dried graphene-based aerogels (i.e., graphene aerogel-GA, nitrogenated GA-NGA, graphene-carbon nanotube hybrid-Gr-MWCNTs, carbon foam-CF, and CF-GA hybrid-CF-GA) and monoliths, prepared by hydrothermal and organic sol-gel methods, respectively. X-ray micro-computed tomography (XMCT) in combination with scanning and transmission electron microscopy allowed visualization of internal microstructures in three-dimensional space. Quantitative morphometry analysis through the reconstructed volume renderings from two-dimensional sliced images revealed hierarchical structures possessing interlaced thin sheets, honeycomb organization, and topological interconnected pore background domains. The influence of small-diameter functionalized multi-walled carbon nanotubes (MWCNTs) inclusions to graphene-like sheets and integration with CF is assessed through quantitative morphometry analysis in terms of volume-weighted pore size, wall thickness, and porosity levels. Hybrid composite porous solids elucidated cross-linking reinforced by a homogeneous distribution of CNTs into complex sheets of GA and CF matrices. A consistent trend impacting porosity and interconnectedness was found following NGA ≥ GA > CF > Gr-MWCNT2:1 > CF-GA > Gr-MWCNT3:1 > Gr-MWCNT5:1, from XMCT image processing and analyses in corroboration with physical properties and reliability. The experimental results provide insights and guide the design of characteristic porous carbonaceous and graphene-based functional nanomaterials for energy sciences, environmental engineering, and fundamental reactive transport of fluids.

1.
X.
Lu
,
M. C.
Arduini-Schuster
,
J.
Kuhn
,
O.
Nilsson
,
J.
Fricke
, and
R. W.
Pekala
,
Science
255
,
971
(
1992
).
2.
A.
Feinle
,
M. S.
Elsaesser
, and
N.
Hüsing
,
Chem. Soc. Rev.
45
,
3377
(
2016
).
3.
M. B.
Bryning
,
D. E.
Milkie
,
M. F.
Islam
,
L. A.
Hough
,
J. M.
Kikkawa
, and
A. G.
Yodh
,
Adv. Mater.
19
,
661
(
2007
).
4.
L.
dos Santos-Gómez
,
J. R.
García
,
M. A.
Montes-Morán
,
J. A.
Menéndez
,
S.
García-Granda
, and
A.
Arenillas
,
Small
17
,
2103407
(
2021
).
5.
M. A.
Worsley
,
T. T.
Pham
,
A.
Yan
,
S. J.
Shin
,
J. R. I.
Lee
,
M. B.
Hansen
,
W.
Mickelson
, and
A.
Zettl
,
ACS Nano
8
,
11013
(
2014
).
6.
S.
Chandrasekaran
,
P. G.
Campbell
,
T. F.
Baumann
, and
M. A.
Worsley
,
J. Mater. Res.
32
,
4166
(
2017
).
7.
S.
Gupta
,
R.
Meek
,
B.
Evans
, and
N.
Dimakis
,
J. Appl. Phys.
124
,
124304
(
2018
).
8.
M. A.
Worsley
,
S. J.
Shin
,
M. D.
Merrill
,
J.
Lenhardt
,
A. J.
Nelson
,
L. Y.
Woo
,
A. E.
Gash
,
T. F.
Baumann
, and
C. A.
Orme
,
ACS Nano
9
,
4698
(
2015
).
10.
S.
Gupta
,
A.
Henson
,
B.
Evans
, and
R.
Meek
,
Desal. Water Treatment
162
,
97
(
2019
).
11.
B.
Zhang
,
J.
Zhang
,
X.
Sang
,
C.
Liu
,
T.
Luo
,
L.
Peng
,
N.
Han
,
X.
Tan
,
X.
Ma
,
D.
Wang
, and
N.
Zhao
,
Sci. Rep.
6
(
25830
),
1
9
(
2016
).
12.
N.
Yousefi
,
X.
Lu
,
M.
Elimelech
, and
N.
Tufenkji
,
Nat. Nanotech.
14
,
107
(
2019
).
13.
A.
du Plessis
,
I.
Yadroitsev
,
I.
Yadroitsava
, and
S. G.
Le Roux
,
3D Printing Additive Manuf.
5
,
227
(
2018
).
14.
R. S.
Bradley
and
P. J.
Withers
,
MRS Bull.
41
,
549
(
2016
).
15.
J. E.
Evans
and
H.
Friedrich
,
MRS Bull.
41
,
516
(
2016
).
16.
H.
Zhang
,
Z.
Wang
,
X.
Luo
,
J.
Lu
,
S.
Peng
,
Y.
Wang
, and
L.
Han
,
Front. Chem.
7
, 1 (
2020
).
17.
K.
Tadyszak
,
B.
Wereszczyńska
, and
M.
Gonet
,
Sol. Stat. Sci.
109
,
106402
(
2020
).
18.
A. J.
Sederman
,
Ind. Tomogr. Elsevier
109
, 1 (
2015
).
19.
K.
Orhan
,
Micro-Computed Tomography (Micro-CT) in Medicine and Engineering
(
Springer Nature
,
Switzerland
,
2020
).
21.
J.
Ambrose
and
G. N.
Hounsfield
,
Br. J. Radiol.
46
,
1023
(
1973
).
22.
G.
McDermott
,
M. A.
Le Gros
, and
C. A.
Larabell
,
Annu. Rev. Phys. Chem.
63
,
225
(
2012
).
23.
L.
Vásárhelyi
,
Z.
Kónya
,
Á
Kukovecz
, and
R.
Vajtai
,
Mater. Today Adv.
8
,
100084
(
2020
).
24.
R. K.
Leary
and
P. A.
Midgley
,
MRS Bull.
41
,
531
(
2016
).
25.
E.
Larsson
,
D.
Gürsoy
,
F.
De Carlo
,
E. T.
Lilleodden
,
M.
Storm
,
F.
Wilde
,
K.
Hu
,
M.
Müller
, and
I.
Greving
,
J. Synchrotron Radiat.
26
,
194
(
2019
).
26.
A.
duPlessis
,
I.
Yadroitsev
,
I.
Yadroitsava
, and
S. G.
Le Roux
, “
X-ray microcomputed tomography in additive manufacturing: A review of the current technology and applications
,”
3D Printing Additive Manuf.
1
,
227
(
2018
)..
27.
28.
S. B.
Palmkron
,
B.
Bergenståhl
,
S.
Håkansson
,
M.
Wahlgren
,
A. M.
Fureby
, and
E.
Larsson
,
Colloids Surfaces A: Physicochem Eng. Aspects
658
,
130726
(
2023
).
29.
B.
Wang
,
B.
Pan
, and
G.
Lubineau
,
Mater. Des.
137
,
305
(
2018
).
30.
P.
Ercius
,
O.
Alaidi
,
M. J.
Rames
, and
G.
Ren
,
Adv. Mater.
27
,
5638
(
2015
).
31.
S.
Bals
,
B.
Goris
,
A.
De Backer
,
S.
Van Aert
, and
G.
van Tendeloo
,
MRS Bull.
41
,
525
(
2016
).
32.
M. H.
Joo
,
S. J.
Park
,
S.-M.
Hong
,
C. K.
Rhee
,
D.
Kim
,
G.
Ji
,
S. W.
Lee
, and
Y.
Sohn
,
Composites Part B: Eng.
231
,
109590
(
2022
).
33.
A.
Klug
and
R. A.
Crowther
,
Nature
238
,
435
(
1972
).
34.
V.
Karageorgiou
and
D.
Kaplan
,
Biomaterials
26
,
5474
(
2005
).
35.
K. J.
Putman
,
M. R.
Rowles
,
N. A.
Marks
,
C.
de Tomas
,
J. W.
Martin
, and
I.
Suarez-Martinez
,
Carbon
209
,
117965
(
2023
).
36.
S.
Gupta
and
A.
Saxena
,
J. Appl. Phys.
109
(
7
),
074316
(
2011
).
37.
J. W.
Martin
,
C.
de Tomas
,
I. S.
Martinez
,
M.
Kraft
, and
N. A.
Marks
, “
Topology of disordered 3D graphene networks
,”
Phys. Rev. Lett.
123
(
11
),
116105
(
2019
).
38.
K.
Hu
,
X.
Xie
,
T.
Szkopek
, and
M.
Cerruti
,
Chem. Mater.
28
,
1756
(
2016
).
39.
N.
Ekdawi-Sever
,
L. A.
Goentoro
, and
J. J. D.
Pablo
,
J. Food Sci.
68
,
2504
(
2003
).
40.
R. A.
Ketcham
and
W. D.
Carlson
,
Comput. Geosci.
27
(
4
),
381
(
2001
).
41.
V.
Rebuffel
and
J.-M. R.
Dinten
,
Insight-Non-Destruct. Test. Cond. Monit.
49
(
10
),
589
(
2007
).
42.
P. M.
Adler
and
J.-F.
Thovert
,
Appl. Mech. Rev.
51
(
9
),
537
(
1998
).

Supplementary Material

You do not currently have access to this content.