Arterial wall active mechanics are driven by resident smooth muscle cells, which respond to biological, chemical, and mechanical stimuli and activate their cytoskeletal machinery to generate contractile stresses. The cellular mechanoresponse is sensitive to environmental perturbations, often leading to maladaptation and disease progression. When investigated at the single cell scale, however, these perturbations do not consistently result in phenotypes observed at the tissue scale. Here, a multiscale model is introduced that translates microscale contractility signaling into a macroscale, tissue-level response. The microscale framework incorporates a biochemical signaling network along with characterization of fiber networks that govern the anisotropic mechanics of vascular tissue. By incorporating both biochemical and mechanical components, the model is more flexible and more broadly applicable to physiological and pathological conditions. The model can be applied to both cell and tissue scale systems, allowing for the analysis of in vitro, traction force microscopy and ex vivo, isometric contraction experiments in parallel. When applied to aortic explant rings and isolated smooth muscle cells, the model predicts that active contractility is not a function of stretch at intermediate strain. The model also successfully predicts cell-scale and tissue-scale contractility and matches experimentally observed behaviors, including the hypercontractile phenotype caused by chronic hyperglycemia. The connection of the microscale framework to the macroscale through the multiscale model presents a framework that can translate the wealth of information already collected at the cell scale to tissue scale phenotypes, potentially easing the development of smooth muscle cell-targeting therapeutics.

1.
R. F.
Furchgott
and
J. V.
Zawadzki
, “
The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine
,”
Nature
288
,
373
376
(
1980
).
2.
Z.
Guo
,
W.
Su
,
S.
Allen
,
H.
Pang
,
A.
Daugherty
,
E.
Smart
, and
M.
Gong
, “
COX-2 Up-regulation and vascular smooth muscle contractile hyperreactivity in spontaneous diabetic db/db mice
,”
Cardiovasc. Res.
67
,
723
735
(
2005
).
3.
T. T.
Hien
,
K. M.
Turczyńska
,
D.
Dahan
,
M.
Ekman
,
M.
Grossi
,
J.
Sjögren
,
J.
Nilsson
,
T.
Braun
,
T.
Boettger
,
E.
Garcia-Vaz
,
K.
Stenkula
,
K.
Swärd
,
M. F.
Gomez
, and
S.
Albinsson
, “
Elevated glucose levels promote contractile and cytoskeletal gene expression in vascular smooth muscle via rho/protein kinase C and actin polymerization
,”
J. Biol. Chem.
291
,
3552
3568
(
2016
).
4.
D.-C.
Guo
,
H.
Pannu
,
V.
Tran-Fadulu
,
C. L.
Papke
,
R. K.
Yu
,
N.
Avidan
,
S.
Bourgeois
,
A. L.
Estrera
,
H. J.
Safi
,
E.
Sparks
,
D.
Amor
,
L.
Ades
,
V.
McConnell
,
C. E.
Willoughby
,
D.
Abuelo
,
M.
Willing
,
R. A.
Lewis
,
D. H.
Kim
,
S.
Scherer
,
P. P.
Tung
,
C.
Ahn
,
L. M.
Buja
,
C. S.
Raman
,
S. S.
Shete
, and
D. M.
Milewicz
, “
Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections
,”
Nat. Genet.
39
,
1488
1493
(
2007
).
5.
J.
Ferruzzi
,
S.-I.
Murtada
,
G.
Li
,
Y.
Jiao
,
S.
Uman
,
M. Y. L.
Ting
,
G.
Tellides
, and
J. D.
Humphrey
, “
Pharmacologically improved contractility protects against aortic dissection in mice with disrupted transforming growth factor-β signaling despite compromised extracellular matrix properties
,”
Arterioscler. Thromb. Vasc. Biol.
36
,
919
927
(
2016
).
6.
D. M.
Milewicz
,
D.-C.
Guo
,
V.
Tran-Fadulu
,
A. L.
Lafont
,
C. L.
Papke
,
S.
Inamoto
,
C. S.
Kwartler
, and
H.
Pannu
, “
Genetic basis of thoracic aortic aneurysms and dissections: Focus on smooth muscle cell contractile function
,”
Annu. Rev. Genomics Hum. Genet.
9
,
283
302
(
2008
).
7.
C. J.
Chuong
and
Y. C.
Fung
, “
Three-Dimensional stress distribution in arteries
,”
J. Biomech. Eng.
105
,
268
274
(
1983
).
8.
Z.
Win
,
J. M.
Buksa
,
K. E.
Steucke
,
G. W.
Gant Luxton
,
V. H.
Barocas
, and
P. W.
Alford
, “
Cellular microbiaxial stretching to measure a single-cell strain energy density function
,”
J. Biomech. Eng.
139
, 07100601–07100610 (
2017
).
9.
H.
Wolinsky
and
S.
Glagov
, “
Structural basis for the static mechanical properties of the aortic media
,”
Circ. Res.
14
,
400
413
(
1964
).
10.
Y.
Liu
,
J.
Wei
,
K.-T.
Ma
,
C.-L.
Li
,
Y.-P.
Mai
,
X.-X.
Qiu
,
H.
Wei
,
N.
Hou
, and
J.-D.
Luo
, “
Carvacrol protects against diabetes-induced hypercontractility in the aorta through activation of the PI3K/Akt pathway
,”
Biomed. Pharmacother.
125
,
109825
(
2020
).
11.
S.
Chandra
,
D. J. R.
Fulton
,
R. B.
Caldwell
,
R. W.
Caldwell
, and
H. A.
Toque
, “
Hyperglycemia-impaired aortic vasorelaxation mediated through arginase elevation: Role of stress kinase pathways
,”
Eur. J. Pharmacol.
844
,
26
37
(
2019
).
12.
J.
Tong
, “
Mechanical characterization and modeling of diabetic aortas
,” in
Solid (Bio)Mechanics: Challenges of the Next Decade: A Book Dedicated to Professor Gerhard A. Holzapfel
, edited by
G.
Sommer
,
K.
Li
,
D. C.
Haspinger
, and
R. W.
Ogden
(
Springer International Publishing
,
2022
), pp.
143
155
.
13.
V. M.
Monnier
,
G. T.
Mustata
,
K. L.
Biemel
,
O.
Reihl
,
M. O.
Lederer
,
D.
Zhenyu
, and
D. R.
Sell
, “
Cross-Linking of the extracellular matrix by the maillard reaction in aging and diabetes: An update on ‘a puzzle nearing resolution,’
Ann. N.Y. Acad. Sci.
1043
,
533
544
(
2005
).
14.
P. E.
Mccallinhart
,
Y.
Cho
,
Z.
Sun
,
S.
Ghadiali
,
G. A.
Meininger
, and
A. J.
Trask
, “
Reduced stiffness and augmented traction force in type 2 diabetic coronary microvascular smooth muscle
,”
Am. J. Physiol. Heart Circ. Physiol.
318
,
H1410
H1419
(
2020
).
15.
J.
Huynh
,
F.
Bordeleau
,
C. M.
Kraning-Rush
, and
C. A.
Reinhart-King
, “
Substrate stiffness regulates PDGF-induced circular dorsal ruffle formation through MLCK
,”
Cell. Mol. Bioeng.
6
,
138
147
(
2013
).
16.
L.
Irons
,
M.
Latorre
, and
J. D.
Humphrey
, “
From transcript to tissue: Multiscale modeling from cell signaling to matrix remodeling
,”
Ann. Biomed. Eng.
49
,
1701
1715
(
2021
).
17.
R. R.
Mahutga
and
V. H.
Barocas
, “
Investigation of pathophysiological aspects of aortic growth, remodeling, and failure using a discrete-fiber microstructural model
,”
J. Biomech. Eng.
142
, 11100701–11100715 (
2020
).
18.
E. G.
Gacek
,
R. R.
Mahutga
, and
V. H.
Barocas
, “
Hybrid discrete-continuum multiscale model of tissue growth and remodeling
,”
Acta Biomater.
163, 7–24 (
2023
).
19.
K.
Uhlmann
and
D.
Balzani
, “
Chemo-mechanical modeling of smooth muscle cell activation for the simulation of arterial walls under changing blood pressure
,”
Biomech. Model. Mechanobiol.
22, 1049–1065 (
2023
).
20.
S.-I.
Murtada
,
M.
Kroon
, and
G. A.
Holzapfel
, “
A calcium-driven mechanochemical model for prediction of force generation in smooth muscle
,”
Biomech. Model. Mechanobiol.
9
,
749
762
(
2010
).
21.
A.
Stracuzzi
,
B. R.
Britt
,
E.
Mazza
, and
A. E.
Ehret
, “
Risky interpretations across the length scales: Continuum vs. Discrete models for soft tissue mechanobiology
,”
Biomech. Model. Mechanobiol.
21
,
433
454
(
2022
).
22.
S. M.
Flanary
and
V. H.
Barocas
, “
A structural bio-chemo-mechanical model for vascular smooth muscle cell traction force microscopy
,”
Biomech. Model. Mechanobiol.
22
, 1221–1238 (
2023
).
23.
M. J.
Kraeutler
,
A. R.
Soltis
, and
J. J.
Saucerman
, “
Modeling cardiac β-adrenergic signaling with normalized-hill differential equations: Comparison with a biochemical model
,”
BMC Syst. Biol.
4
,
157
(
2010
).
24.
J. J.
Saucerman
,
X.
Liu
, and
M.
Sutcliffe
, see https://github.com/saucermanlab/Netflux for Netflux (
2015
).
25.
V. S.
Deshpande
,
M.
Mrksich
,
R. M.
McMeeking
, and
A. G.
Evans
, “
A bio-mechanical model for coupling cell contractility with focal adhesion formation
,”
J. Mech. Phys. Solids
56
,
1484
1510
(
2008
).
26.
R. R.
Mahutga
,
C. T.
Schoephoerster
, and
V. H.
Barocas
, “
The ring-pull assay for mechanical properties of fibrous soft tissues: An analysis of the uniaxial approximation and a correction for nonlinear thick-walled tissues
,”
Exp. Mech.
61
,
53
66
(
2021
).
27.
N.
Menga
and
G.
Carbone
, “
The surface displacements of an elastic half-space subjected to uniform tangential tractions applied on a circular area
,”
Eur. J. Mech. A/Solids
73
,
137
143
(
2019
).
28.
M.
Nikpasand
,
R. R.
Mahutga
,
L. M.
Bersie-Larson
,
E.
Gacek
, and
V. H.
Barocas
, “
A hybrid microstructural-continuum multiscale approach for modeling hyperelastic fibrous soft tissue
,”
J. Elasticity
145
, 295–319 (
2021
).
29.
S. A.
Maas
,
B. J.
Ellis
,
G. A.
Ateshian
, and
J. A.
Weiss
, “
FEBio: Finite elements for biomechanics
,”
J. Biomech. Eng.
134
,
011005
(
2012
).
30.
E. U.
Alejandro
,
N.
Bozadjieva
,
D.
Kumusoglu
,
S.
Abdulhamid
,
H.
Levine
,
L.
Haataja
,
S.
Vadrevu
,
L. S.
Satin
,
P.
Arvan
, and
E.
Bernal-Mizrachi
, “
Disruption of O-linked N-acetylglucosamine signaling induces ER stress and beta-cell failure
,”
Cell Rep.
13
,
2527
2538
(
2015
).
31.
R.
Mohan
,
S.
Jo
,
A.
Lockridge
,
D. A.
Ferrington
,
K.
Murray
,
A.
Eschenlauer
,
E.
Bernal-Mizrachi
,
Y.
Fujitani
, and
E. U.
Alejandro
, “
OGT regulates mitochondrial biogenesis and function via diabetes susceptibility gene Pdx1
,”
Diabetes
70
,
2608
2625
(
2021
).
32.
K. E.
Steucke
,
P. V.
Tracy
,
E. S.
Hald
,
J. L.
Hall
, and
P. W.
Alford
, “
Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties
,”
J. Biomech.
48
,
3044
3051
(
2015
).
33.
L.
Porter
,
R.-M.
Minaisah
,
S.
Ahmed
,
S.
Ali
,
R.
Norton
,
Q.
Zhang
,
E.
Ferraro
,
C.
Molenaar
,
M.
Holt
,
S.
Cox
,
S.
Fountain
,
C.
Shanahan
, and
D.
Warren
, “
SUN1/2 Are essential for RhoA/ROCK-regulated actomyosin activity in isolated vascular smooth muscle cells
,”
Cells
9
,
132
(
2020
).
34.
E.
Lespagnol
,
L.
Dauchet
,
M.
Pawlak-Chaouch
,
C.
Balestra
,
S.
Berthoin
,
M.
Feelisch
,
M.
Roustit
,
J.
Boissière
,
P.
Fontaine
, and
E.
Heyman
, “
Early endothelial dysfunction in type 1 diabetes is accompanied by an impairment of vascular smooth muscle function: A meta-analysis
,”
Front Endocrinol.
11
, 203 (
2020
).
35.
S. C.
Murtada
,
A.
Arner
, and
G. A.
Holzapfel
, “
Experiments and mechanochemical modeling of smooth muscle contraction: Significance of filament overlap
,”
J. Theor. Biol.
297
,
176
186
(
2012
).
36.
J. T.
Herlihy
and
R. A.
Murphy
, “
Length-tension relationship of smooth muscle of the Hog carotid artery
,”
Circ. Res.
33
,
275
283
(
1973
).
37.
C. Y.
Seow
, “
Hill’s equation of muscle performance and its hidden insight on molecular mechanisms
,”
J. Gen. Physiol.
142
,
561
573
(
2013
).
38.
A. W.
Caulk
,
J. D.
Humphrey
, and
S.-I.
Murtada
, “
Fundamental roles of axial stretch in isometric and isobaric evaluations of vascular contractility
,”
J. Biomech. Eng.
141
,
03100810
(
2019
).
39.
A. C.
Estrada
,
L.
Irons
,
B. V.
Rego
,
G.
Li
,
G.
Tellides
, and
J. D.
Humphrey
, “
Roles of mTOR in thoracic aortopathy understood by complex intracellular signaling interactions
,”
PLoS Comput. Biol.
17
, e1009683 (
2021
).
40.
K.
Yoshida
,
J. J.
Saucerman
, and
J. W.
Holmes
, “
Multiscale model of heart growth during pregnancy: Integrating mechanical and hormonal signaling
,”
Biomech. Model. Mechanobiol.
21
,
1267
1283
(
2022
).
41.
X.
Liu
,
J.
Zhang
,
A. C.
Zeigler
,
A. R.
Nelson
,
M. L.
Lindsey
, and
J. J.
Saucerman
, “
Network analysis reveals a distinct axis of macrophage activation in response to conflicting inflammatory cues
,”
J. Immunol.
206
,
883
891
(
2021
).
42.
M. R.
Bersi
,
R.
Khosravi
,
A. J.
Wujciak
,
D. G.
Harrison
, and
J. D.
Humphrey
, “
Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension
,”
J. R. Soc. Interface
14
,
20170327
(
2017
).

Supplementary Material

You do not currently have access to this content.