The radiation intensity dependence of photothermal (PT) and photocarrier (PC) signals from n-type CdSe single crystals was investigated by modulated infrared radiometry (MIRR) in the mid-IR range (5–11.3 μm) with superbandgap photoexcitation. The influence of dc temperature increase of the sample was avoided by a new step-sine modulation method that combines the advantages of transient and periodical modulation. With increasing laser intensity I, the amplitude of the PC component shows a sub-linear dependence (|SPC| ∝ I0.5), while the PT one has the expected linear dependence (|SPT| ∝ I). As a result, the transition frequency ft between the two components is shifted to higher frequencies, which is explained in the frame of a simple model. The origin of the observed effects is the decrease of the effective photocarrier lifetime τ ∝ I−0.5 over three laser intensity decades. In contrast, previous studies on nonlinear PC response in semiconductors performed in the near-IR range (0.7–1.8 μm) have found supra-linear |SPC| dependence with exponent between 1 and 2. This difference is attributed to the fact that the near-IR radiometric signal features characteristics of a photoluminescence (PL) signal that are different from those of the mid-IR PC signal, as shown in our previous study [J. Appl. Phys. 119, 125108 (2016)] on the same CdSe samples.

1.
J.
Abraham
,
R.
Arunima
,
K. C.
Nimitha
,
S. C.
George
, and
S.
Thomas
, “
Nanoscale processing: A volume in micro and nano technologies
,” in
One-Dimensional (1D) Nanomaterials: Nanorods and Nanowires; Nanoscale Processing
, edited by
S.
Thomas
and
P.
Balakrishnan
(
Elsevier
,
2021
), Chap. 3, pp.
71
101
.
2.
See https://4lasers.com/en/components/crystals/nonlinear-crystals/cdse-crystals for information about the optical properties and application domains of CdSe crystals.
3.
M.
Pawlak
,
M.
Chirtoc
,
N.
Horny
, and
J.
Pelzl
, “
Spectrally resolved modulated infrared radiometry of photothermal, photocarrier and photoluminescence response of CdSe crystals: Determination of optical, thermal and electronic transport parameters
,”
J. Appl. Phys.
119
,
125108
(
2016
).
4.
D. P.
Almond
and
P. M.
Patel
, “
Physics and its applications
,” in
Photothermal Science and Techniques
, edited by
E. R.
Dobbs
and
S. B.
Palmer
(
Chapman and Hall
,
London
,
1996
), Vol. 10.
5.
M.
Chirtoc
,
A.
Fleming
,
N.
Horny
, and
H.
Ban
, “
Nonlinear heterodyne photothermal radiometry for emissivity-free pyrometry
,”
J. Appl. Phys.
128
,
153101
(
2020
).
6.
J.
Tolev
,
A.
Mandelis
, and
M.
Pawlak
, “
Nonlinear dependence of photocarrier radiometry signals from p-Si wafers on optical excitation intensity
,”
J. Electrochem. Soc.
154
,
H983
H994
(
2007
).
7.
A.
Mandelis
, “
Laser infrared photothermal radiometry of semiconductors: Principles and applications to solid state electronics
,”
Solid-State Electron.
42
,
1
15
(
1998
).
8.
A. C.
Tam
, “
Applications of photoacoustic sensing techniques
,”
Rev. Mod. Phys.
58
,
381
(
1986
).
9.
A.
Mandelis
, “
Signal-to-noise ratio in lock-in amplifier synchronous detection: A generalized communications systems approach with applications to frequency, time, and hybrid (rate window) photothermal measurements
,”
Rev. Sci. Instrum.
65
,
3309
3323
(
1994
).
10.
A.
Mandelis
,
M.
Pawlak
,
C.
Wang
,
I.
Delgadillo-Holtfort
, and
J.
Pelzl
, “
Time-domain and lock-in rate-window photocarrier radiometric measurements of recombination processes in silicon
,”
J. Appl. Phys.
98
,
123518
(
2005
).
11.
J.-L.
Battaglia
,
E.
Ruffio
,
A.
Kusiak
,
C.
Pradere
,
E.
Abisset
,
S.
Chevalier
,
A.
Sommier
, and
J.-C.
Batsale
, “
The periodic pulse photothermal radiometry technique within the front face configuration
,”
Measurement
158
,
107691
(
2020
).
12.
A.
Mandelis
, “
Time-delay-domain and pseudorandom-noise photoacoustic and photothermal wave processes: A review of the state of the art
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
33
,
590
614
(
1986
).
13.
N.
Tabatabaei
and
A.
Mandelis
, “
Thermal-wave radar: A novel subsurface imaging modality with extended depth-resolution dynamic range
,”
Rev. Sci. Instrum.
80
,
034902
(
2009
).
14.
S.
Dilhaire
,
G.
Pernot
,
G.
Calbris
,
J. M.
Rampnoux
, and
S.
Grauby
, “
Heterodyne picosecond thermoreflectance applied to nanoscale thermal metrology
,”
J. Appl. Phys.
110
,
114314
(
2011
).
15.
Q.
Sun
,
A.
Melnikov
, and
A.
Mandelis
, “
Camera-based high frequency heterodyne lock-in carrierographic (frequency-domain photoluminescence) imaging of crystalline silicon wafers
,”
Phys. Status Solidi A
213
,
405
411
(
2016
).
16.
A.
Mandelis
,
J.
Batista
, and
D.
Shaughnessy
, “
Infrared photocarrier radiometry of semiconductors: Physical principles, quantitative depth profilometry, and scanning imaging of deep subsurface electronic defects
,”
Phys. Rev. B
67
,
205208
(
2003
).
17.
A.
Mandelis
,
J.
Batista
,
J.
Gibkes
,
M.
Pawlak
, and
J.
Pelzl
, “
Noncontacting laser photocarrier radiometric depth profilometry of harmonically modulated band bending in the space-charge layer at doped SiO2-Si interfaces
,”
J. Appl. Phys.
97
,
083507
(
2005
).
18.
D.
Guidotti
,
J. S.
Batchelder
,
A.
Finkel
, and
J. A.
Van Vechten
, “
First-overtone response in modulated photoluminescence emission in silicon at room temperature
,”
Phys. Rev. B
38
,
1569
(
1988
).
19.
S. K.
Krawczyk
and
M. F.
Nuban
, “
Room-temperature scanning photoluminescence for mapping the lifetime and the doping density in compound semiconductors
,”
Mater. Sci. Eng. B
28
,
452
456
(
1994
).
20.
F. K.
Reinhart
, “
Excitation dependence of photoluminescence due to nonlinear recombination and diffusion
,”
J. Appl. Phys.
99
,
073102
(
2006
).
21.
W. M.
Bullis
and
H. R.
Huff
, “
Interpretation of carrier recombination lifetime and diffusion length measurements in silicon
,”
J. Electrochem. Soc.
143
,
1399
(
1996
).
22.
R. N.
Hall
, “
Electron-hole recombination in germanium
,”
Phys. Rev.
87
,
387
(
1952
).
23.
W.
Shockley
and
W. T.
Read
, Jr
, “
Statistics of the recombinations of holes and electrons
,”
Phys. Rev.
87
,
835
(
1952
).
24.
M.
Pawlak
,
M.
Maliński
,
F.
Firszt
,
J.
Pelzl
,
A.
Ludwig
, and
A.
Marasek
, “
Linear relationship between the Hall carrier concentration and the effective absorption coefficient measured by means of the photothermal radiometry in IR semi-transparent n-type CdMgSe mixed crystals
,”
Meas. Sci. Technol.
25
,
035204
(
2014
).
25.
M.
Chirtoc
and
N.
Horny
, “
Toolbox for modeling photothermal experiments on multilayers
,”
J. Appl. Phys.
131
,
214502
(
2022
).
26.
A.
Salnick
,
A.
Mandelis
,
H.
Ruda
, and
C.
Jean
, “
Relative sensitivity of photomodulated reflectance and photothermal infrared radiometry to thermal and carrier plasma waves in semiconductors
,”
J. Appl. Phys.
82
,
1853
1859
(
1997
).
27.
A.
Salazar
,
E.
Apinaniz
,
A.
Mendioroz
, and
A.
Oleaga
, “
A thermal paradox: Which gets warmer?
,”
Eur. J. Phys.
31
,
1053
1059
(
2010
).
28.
A.
Mandelis
,
M.
Nestoros
, and
C.
Christofides
, “
Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures
,”
Opt. Eng.
36
,
459
468
(
1997
).
29.
A.
Mandelis
, “
Photo-carrier radiometry of semiconductors: A novel powerful optoelectronic diffusion-wave technique for silicon process nondestructive evaluation
,”
NDT Int.
39
,
244
252
(
2006
).
30.
A.
Mandelis
,
A.
Othonos
,
C.
Christofides
, and
J.
Boussey-Said
, “
Noncontacting measurements of photocarrier lifetimes in bulk- and polycrystalline thin-film Si photoconductive devices by photothermal radiometry
,”
J. Appl. Phys.
80
,
5332
(
1996
).
31.
M.
Pawlak
,
M.
Maliński
,
F.
Firszt
,
S.
Łęgowski
,
H.
Męczyńska
,
J.
Ollesch
,
A.
Ludwig
,
A.
Marasek
, and
C.
Schulte-Braucks
, “
Investigation of carrier scattering mechanisms in n-Cd1-xMgxSe single crystals using Fourier transform infrared spectroscopy
,”
Infrared Phys. Technol.
64
,
115
118
(
2014
).
32.
See https://www.pveducation.org/pvcdrom/materials/cdse-wurtzite for information about the physical properties of CdSe crystals.
33.
F.
Firszt
,
S.
Łegowski
,
H.
Meczynska
,
J.
Szatkowski
,
W.
Paszkowicz
, and
K.
Godwod
, “
Growth and characterisation of ZnBeSe mixed crystals
,”
J. Cryst. Growth
184–185
,
1053
(
1998
).
34.
M. E.
Rodriguez
,
J. A.
Garcia
,
A.
Mandelis
,
C.
Jean
, and
Y.
Riopel
, “
Kinetics of surface-state laser annealing in Si by frequency-swept infrared photothermal radiometry
,”
Appl. Phys. Lett.
74
,
2429
2431
(
1999
).
35.
S. J.
Sheard
,
M. G.
Somekh
, and
T.
Hiller
, “
Non-contacting determination of carrier lifetime and surface recombination velocity using photothermal radiometry
,”
Mater. Sci. Eng. B
5
,
101
105
(
1990
).
You do not currently have access to this content.