Thermal switching by magnetic fields is one of the important functionalities in thermal management technologies. In low-temperature devices, superconducting states can be used as a magneto-thermal-switching (MTS) component because carrier thermal conductivity (κ) is strongly suppressed in superconducting states. Recently, we demonstrated that the MTS ratio (MTSR) of pure Nb reached 650% at a temperature (T) of 2.5 K under a magnetic field (H) of 4.0 kOe [Yoshida et al., Appl. Phys. Express 16, 033002 (2023)]. In this study, to enrich knowledge on MTS of superconductors, the MTSRs of pure Pb wires with 5 N and 3 N purities were investigated by measuring the temperature or magnetic-field dependences of κ. For 5N-Pb, a large MTSR exceeding 1000% was observed below 3.6 K under H > 600 Oe. Although higher MTSRs were expected at lower temperatures under H > 600 Oe, the obtained data under those conditions were accompanied by large errors due to magnetic-field-induced huge κ at low temperatures. In contrast, the κ for 3N-Pb was observed to be clearly lower than that for 5N-Pb. Although the magnetic-field-induced change in κ was small, the MTSR at T = 2.5 K was 300%. These results suggest that Pb is a promising material for low-temperature magneto-thermal switching because of wide-range κ tunable by magnetic field and purity.

1.
S.
Pagano
and
A.
Barone
,
Supercond. Sci. Technol.
10
,
904
908
(
1997
).
2.
A. A.
Golubov
,
M. Y.
Kupriyanov
, and
E.
Il’ichev
,
Rev. Mod. Phys.
76
,
411
469
(
2004
).
3.
A. A.
Yurgens
,
Supercond. Sci. Technol.
13
,
R85
R100
(
2000
).
4.
H. L.
Huang
,
D.
Wu
,
D.
Fan
, and
X.
Zhu
,
Sci. China Info Sci.
63
,
180501
(
2020
).
5.
M.
Kjaergaard
,
M. E.
Schwartz
,
J.
Braumüller
,
P.
Krantz
,
J. I. J.
Wang
,
S.
Gustavsson
, and
W. D.
Oliver
,
Annu. Rev. Condens. Matter Phys.
11
,
369
(
2020
).
6.
R.
Matsumura
,
Y.
Hosono
,
R.
Tanimoto
,
Y.
Yamada
,
K.
Takahashi
,
R.
Hironaga
,
T.
Hasegawa
,
H.
Tamura
, and
T.
Mito
,
IEEE Trans. Appl. Supercond.
26
,
4800104
(
2016
).
7.
S.
Hahn
,
Y.
Kim
,
J.
Song
,
J. P.
Voccio
,
Y.
Chu
,
J.
Bascuñán
,
M.
Tomita
, and
Y.
Iwasa
,
IEEE Trans. Appl. Supercond.
25
,
4300905
(
2015
).
8.
A. P.
Drozdov
,
M. I.
Eremets
,
I. A.
Troyan
,
V.
Ksenofontov
, and
S. I.
Shylin
,
Nature
525
,
73
76
(
2015
).
9.
A. P.
Drozdov
,
P. P.
Kong
,
V. S.
Minkov
,
S. P.
Besedin
,
M. A.
Kuzovnikov
,
S.
Mozaffari
,
L.
Balicas
,
F. F.
Balakirev
,
D. E.
Graf
,
V. B.
Prakapenka
,
E.
Greenberg
,
D. A.
Knyazev
,
M.
Tkacz
, and
M. I.
Eremets
,
Nature
569
,
528
531
(
2019
).
10.
M.
Somayazulu
,
M.
Ahart
,
A. K.
Mishra
,
Z. M.
Geballe
,
M.
Baldini
,
Y.
Meng
,
V. V.
Struzhkin
, and
R. J.
Hemley
,
Phys. Rev. Lett.
122
,
027001
(
2019
).
11.
N.
Dasenbrock-Gammon
,
E.
Snider
,
R.
McBride
,
H.
Pasan
,
D.
Durkee
,
N.
Khalvashi-Sutter
,
S.
Munasinghe
,
S. E.
Dissanayake
,
K. V.
Lawler
,
A.
Salamat
, and
R. P.
Dias
,
Nature
615
,
244
250
(
2023
).
12.
C. J.
Pickard
,
I.
Errea
, and
M. I.
Eremets
,
Annu. Rev. Condens. Matter Phys.
11
,
57
(
2020
).
13.
H.
Nakayama
,
B.
Xu
,
S.
Iwamoto
,
K.
Yamamoto
,
R.
Iguchi
,
A.
Miura
,
T.
Hirai
,
Y.
Miura
,
Y.
Sakuraba
,
J.
Shiomi
, and
K. I.
Uchida
,
Appl. Phys. Lett.
118
,
042409
(
2021
).
14.
J.
Kimling
,
R. B.
Wilson
,
K.
Rott
,
J.
Kimling
,
G.
Reiss
, and
D. G.
Cahill
,
Phys. Rev. B
91
,
144405
(
2015
).
15.
N.
Li
,
J.
Ren
,
L.
Wang
,
G.
Zhang
,
P.
Hänggi
, and
B.
Li
,
Rev. Mod. Phys.
84
,
1045
1066
(
2012
).
16.
G.
Wehmeyer
,
T.
Yabuki
,
C.
Monachon
,
J.
Wu
, and
C.
Dames
,
Appl. Phys. Rev.
4
,
041304
(
2017
).
17.
Y.
Li
,
W.
Li
,
T.
Han
,
X.
Zheng
,
J.
Li
,
B.
Li
,
S.
Fan
, and
C. W.
Qiu
,
Nat. Rev. Mater.
6
,
488
(
2021
).
18.
M.
Yoshida
,
M. R.
Kasem
,
A.
Yamashita
,
K. I.
Uchida
, and
Y.
Mizuguchi
,
Appl. Phys. Express
16
,
033002
(
2023
).
19.
Thermal Conductivity: Theory, Properties, and Applications, edited by T. M. Tritt (Kluwer Academic, 2004).
20.
C. M.
Jaworski
,
J.
Yang
,
S.
Mack
,
D. D.
Awschalom
,
R. C.
Myers
, and
J. P.
Heremans
,
Phys. Rev. Lett.
106
,
186601
(
2011
).
21.
N. R.
Dilley
,
R. C.
Black
,
L.
Montes
,
A.
Wilson
, and
M. B.
Simmonds
,
Mater. Res. Soc. Symp. Proc.
691
,
35
(
2001
).
22.
L. P.
Mezahov-Deglin
,
Zh. Eksp. Teor. Fiz.
77
,
733
(
1979
).

Supplementary Material

You do not currently have access to this content.