Application of metamaterial in realistic devices requires reliable approaches for effective material parameters. We demonstrate that a general homogenization procedure is non-versatile relative to the approach associated with the device functionality either inside or outside the structure. We exemplify it with internal and external treatments for the effective permittivity of a metamaterial in a lens consisting of dielectric rods. The dependence of the focal length on the permittivity and frequency of the incident field is determined, and the composite metalens with an ordinary lens are compared. The focal length is the same for both lens types. The approaches are compared to obtain effective permittivity values. The results show that different methods of homogenization are to be considered for a property description depending on the needs.

1.
K.
Koshelev
and
Y.
Kivshar
, “
Dielectric resonant metaphotonics
,”
ACS Photonics
8
,
102
112
(
2021
).
2.
P.
Tonkaev
,
I. S.
Sinev
,
M. V.
Rybin
,
S. V.
Makarov
, and
Y.
Kivshar
, “
Multifunctional and transformative metaphotonics with emerging materials
,”
Chem. Rev.
122
,
15414
15449
(
2022
).
3.
F.
Ling
,
Z.
Zhong
,
R.
Huang
, and
B.
Zhang
, “
A broadband tunable terahertz negative refractive index metamaterial
,”
Sci. Rep.
8
,
9843
(
2018
).
4.
T.
Suzuki
,
M.
Sekiya
,
T.
Sato
, and
Y.
Takebayashi
, “
Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband
,”
Opt. Express
26
,
8314
8324
(
2018
).
5.
J.
Wang
,
F.
Allein
,
N.
Boechler
,
J.
Friend
, and
O.
Vazquez-Mena
, “
Design and fabrication of negative-refractive-index metamaterial unit cells for near-megahertz enhanced acoustic transmission in biomedical ultrasound applications
,”
Phys. Rev. Appl.
15
,
024025
(
2021
).
6.
J.
Prat-Camps
,
C.
Navau
, and
A.
Sanchez
, “
A magnetic wormhole
,”
Sci. Rep.
5
,
1
5
(
2015
).
7.
K.-P.
Ye
,
W.-J.
Pei
,
Z.-H.
Sa
,
H.
Chen
, and
R.-X.
Wu
, “
Invisible gateway by superscattering effect of metamaterials
,”
Phys. Rev. Lett.
126
,
227403
(
2021
).
8.
E. E.
Maslova
,
M. F.
Limonov
, and
M. V.
Rybin
, “
Dielectric metamaterials with electric response
,”
Opt. Lett.
43
,
5516
5519
(
2018
).
9.
J.
Chen
,
H.
Nie
,
T.
Zha
,
P.
Mao
,
C.
Tang
,
X.
Shen
, and
G.-S.
Park
, “
Optical magnetic field enhancement by strong coupling in metamaterials
,”
J. Lightwave Technol.
36
,
2791
2795
(
2018
).
10.
A.
Ghobadi
,
T. G.
Ulusoy Ghobadi
,
F.
Karadas
, and
E.
Ozbay
, “
Semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications
,”
Adv. Opt. Mater.
7
,
1900028
(
2019
).
11.
S.
Agarwal
,
Y. K.
Prajapati
, and
A.
Kumar
, “Advanced materials-based nano-absorbers for thermo-photovoltaic cells,” in Advances in Terahertz Technology and Its Applications (Springer, 2021), pp. 191–209.
12.
T.
Nagao
,
D. D.
Thang
,
D. T.
Anh
,
S.
Ishii
, and
T.
Nabatame
, “Wavelength-selective photothermal infrared sensors,” in System-Materials Nanoarchitectonics (Springer, 2022), pp. 71–91.
13.
A.
Ghobadi
, “Strong light-matter interaction in lithography-free perfect absorbers for photoconversion, photodetection, light emission, sensing, and filtering applications,” Ph.D. thesis (Bilkent University, 2022).
14.
M.
Gómez-Castaño
,
J. L.
Garcia-Pomar
,
L. A.
Pérez
,
S.
Shanmugathasan
,
S.
Ravaine
, and
A.
Mihi
, “
Electrodeposited negative index metamaterials with visible and near infrared response
,”
Adv. Opt. Mater.
8
,
200865
(
2020
).
15.
D. R.
Smith
and
J. B.
Pendry
, “
Homogenization of metamaterials by field averaging
,”
J. Opt. Soc. Am. B
23
,
391
403
(
2006
).
16.
C.
Simovski
, “
Material parameters of metamaterials (a review)
,”
Opt. Spectrosc.
107
,
726
753
(
2009
).
17.
P. A.
Huidobro
,
M. G.
Silveirinha
,
E.
Galiffi
, and
J.
Pendry
, “
Homogenization theory of space-time metamaterials
,”
Phys. Rev. Appl.
16
,
014044
(
2021
).
18.
A. S.
Hossain
,
I.
Tsukerman
, and
V. A.
Markel
, “
Homogenization of periodic structures: One layer is ‘bulk’
,”
Europhys. Lett.
138
,
35001
(
2022
).
19.
M. V.
Rybin
,
D. S.
Filonov
,
K. B.
Samusev
,
P. A.
Belov
,
Y. S.
Kivshar
, and
M. F.
Limonov
, “
Phase diagram for the transition from photonic crystals to dielectric metamaterials
,”
Nat. Commun.
6
,
10102
(
2015
).
20.
E.
Maslova
,
M. F.
Limonov
, and
M. V.
Rybin
, “
Transition between a photonic crystal and a metamaterial with electric response in dielectric structures
,”
JETP Lett.
109
,
340
344
(
2019
).
21.
J. D.
Joannopoulos
,
S. G.
Johnson
,
J. N.
Winn
, and
R. D.
Meade
,
Photonic Crystals: Molding the Flow of Light
,
2nd ed.
(
Princeton University Press
,
2008
), p. 304.
22.
M.
Wuttig
,
H.
Bhaskaran
, and
T.
Taubner
, “
Phase-change materials for non-volatile photonic applications
,”
Nat. Photonics
11
,
465
476
(
2017
).
23.
S. V.
Makarov
,
A. S.
Zalogina
,
M.
Tajik
,
D. A.
Zuev
,
M. V.
Rybin
,
A. A.
Kuchmizhak
,
S.
Juodkazis
, and
Y.
Kivshar
, “
Light-induced tuning and reconfiguration of nanophotonic structures
,”
Laser Photonics Rev.
11
,
1700108
(
2017
).
24.
S.
O’Brien
and
J. B.
Pendry
, “
Photonic band-gap effects and magnetic activity in dielectric composites
,”
J. Phys.: Condens Matter
14
,
4035
(
2002
).
25.
K. M.
Leung
and
Y.
Qiu
, “
Multiple-scattering calculation of the two-dimensional photonic band structure
,”
Phys. Rev. B
48
,
7767
(
1993
).
26.
A. A.
Dmitriev
and
M. V.
Rybin
, “
Combining isolated scatterers into a dimer by strong optical coupling
,”
Phys. Rev. A
99
,
063837
(
2019
).
27.
S. V.
Li
,
Y. S.
Kivshar
, and
M. V.
Rybin
, “
Towards silicon-based metamaterials
,”
ACS Photonics
5
,
4751
4757
(
2018
).
28.
I.
Yusupov
,
D.
Filonov
,
A.
Bogdanov
,
P.
Ginzburg
,
M. V.
Rybin
, and
A.
Slobozhanyuk
, “
Chipless wireless temperature sensor based on quasi-bic resonance
,”
Appl. Phys. Lett.
119
,
193504
(
2021
).
29.
J.
Huo
,
Y.
Wang
,
N.
Wang
,
W.
Gao
,
J.
Zhou
, and
Y.
Cao
, “
Data-driven design and optimization of ultra-tunable acoustic metamaterials
,”
Smart Mater. Struct.
32
,
05LT01
(
2023
).
You do not currently have access to this content.