Innovative, low-loss, and compact optical systems are essential to meet the experimental requirements of emerging novel radiation sources. The microchannel plate (MCP), a metamaterial-based optical device, shows promising potential for shaping, condensing, and focusing soft x-ray radiation at synchrotron radiation (SR) facilities. This study highlights the impact of MCP optical devices on SR beam condensing capability and their sensitivity to the degree of coherence by investigating the profile of transmitted beams through single and double MCP optical devices. Transmitted diffraction patterns of soft x-ray SR radiation change with energy and radiation modes. At 92 eV, the double MCP-based device affects the beam divergence and degree of coherence more than the single MCP. Moreover, the double MCP device shows potential as a condensing optics at shorter wavelengths, i.e., 480 eV. Experiments were performed at the available end-station of the Circular Polarization beamline at the Elettra synchrotron facility in Trieste, using a high-vacuum chamber with a hexapod system, providing the precise movement necessary to align these diffractive optics. The findings contribute to the development of innovative optical systems for SR and free-electron laser beamlines, paving the way for advanced experiments in spectroscopy, microscopy, and imaging in a wide energy range.

1.
I.
Matsuda
and
Y.
Kubota
, “
Recent progress in spectroscopies using soft x-ray free-electron lasers
,”
Chem. Lett.
50
,
1336
1344
(
2021
).
2.
J.
Zhong
,
H.
Zhang
,
X.
Sun
, and
S. T.
Lee
, “
Synchrotron soft x-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications
,”
Adv. Mater.
26
,
7786
7806
(
2014
).
3.
B. A.
Collins
and
E.
Gann
, “
Resonant soft x-ray scattering in polymer science
,”
J. Polym. Sci.
60
,
1199
1243
(
2022
).
4.
Z.
Ebrahimpour
,
M.
Coreno
,
L.
Giannessi
,
M.
Ferrario
,
A.
Marcelli
,
F.
Nguyen
,
S. J.
Rezvani
,
F.
Stellato
et al, “
Progress and perspectives of spectroscopic studies at carbon K-edge using novel soft X-ray pulsed sources
,”
Condens. Matter
7
,
72
(
2022
).
5.
M.
Ferrario
,
D.
Alesini
,
M. P.
Anania
,
M.
Artioli
,
A.
Bacci
,
S.
Bartocci
,
R.
Bedogni
,
M.
Bellaveglia
et al, “
EuPRAXIA@SPARC_LAB design study towards a compact FEL facility at LNF
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
909
,
134
138
(
2018
).
6.
R.
Pompili
,
E.
Chiadroni
,
A.
Cianchi
,
M.
Ferrario
,
A.
Gallo
,
V.
Shpakov
, and
F.
Villa
, “
From SPARC_LAB to EuPRAXIA@SPARC_LAB
,”
Instruments
3
,
45
(
2019
).
7.
V.
Petrillo
,
A.
Bacci
,
E.
Chiadroni
,
G.
Dattoli
,
M.
Ferrario
,
A.
Giribono
,
A.
Marocchino
,
A.
Petralia
et al, “
Free electron laser in the water window with plasma driven electron beams
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
909
,
303
308
(
2018
).
8.
F.
Villa
,
M.
Coreno
,
Z.
Ebrahimpour
,
L.
Giannessi
,
A.
Marcelli
,
M.
Opromolla
,
V.
Petrillo
, and
F.
Stellato
, “
ARIA—A VUV beamline for EuPRAXIA@SPARC_LAB
,”
Condens. Matter
7
,
11
(
2022
).
9.
A.
Balerna
,
M.
Ferrario
, and
F.
Stellato
, “
The INFN-LNF present and future accelerator-based light facilities
,”
Eur. Phys. J. Plus
138
(
1
),
37
(
2023
).
10.
N. S.
Kumar
,
K. C. B.
Naidu
,
P.
Banerjee
,
T. A.
Babu
, and
B. V. S.
Reddy
, “
A review on metamaterials for device applications
,”
Crystals
11
(5),
518
(
2021
).
11.
H.
Liu
,
M.
Zhao
,
Y.
Gong
,
K.
Li
,
C.
Wang
,
Y.
Wei
,
J.
Wang
,
G.
Liu
,
J.
Yao
,
Y.
Li
et al, “
A high precision and multifunctional electro-optical conversion efficiency measurement system for metamaterial-based thermal emitters
,”
Sensors
22
(
4
),
1313
(
2022
).
12.
Y.
Han
,
J.
Lin
, and
Y. S.
Lin
, “
Tunable metamaterial-based silicon waveguide
,”
Opt. Lett.
45
,
6619
6622
(
2020
).
13.
A.
Alvarez-Fernandez
,
C.
Cummins
,
M.
Saba
,
U.
Steiner
,
G.
Fleury
,
V.
Ponsinet
, and
S.
Guldin
, “
Block copolymer directed metamaterials and metasurfaces for novel optical devices
,”
Adv. Opt. Mater.
9
(
16
),
2100175
(
2021
).
14.
J.
Ladislas Wiza
, “
Microchannel plate detectors
,”
Nucl. Instrum. Methods
162
,
587
601
(
1979
).
15.
G.
Vinelli
,
R.
Ferragut
,
M.
Giammarchi
,
G.
Maero
,
M.
Romé
, and
V.
Toso
, “
Real-time monitoring of a positron beam using a microchannel plate in single-particle mode
,”
J. Instrum.
15
,
P11030
(
2020
).
16.
A. S.
Tremsin
and
J. V.
Vallerga
, “
Unique capabilities and applications of microchannel plate (MCP) detectors with Medipix/Timepix readout
,”
Radiat. Meas.
130
,
106228
(
2020
).
17.
T.
Cremer
,
B. W.
Adams
,
M.
Aviles
,
C.
Ertley
,
M. R.
Foley
,
A. V.
Lyashenko
,
M. J.
Minot
,
M. A.
Popecki
et al, “
Recent developments on next-generation microchannel plates for particle identification applications
,”
Proc. SPIE
11118
,
111180M
(
2019
).
18.
J.
De Keyser
,
K.
Altwegg
,
A.
Gibbons
,
F.
Dhooghe
,
H.
Balsiger
,
J. J.
Berthelier
,
S. A.
Fuselier
,
T. I.
Gombosi
et al, “
Position-dependent microchannel plate gain correction in Rosetta’s ROSINA/DFMS mass spectrometer
,”
Int. J. Mass Spectrom.
446
,
116232
(
2019
).
19.
Y.
Yang
,
B.
Zhu
,
Y.
Gou
,
Z.
Chen
,
X.
Bai
,
J.
Qin
,
Y.
Bai
,
B.
Liu
et al, “
A sealed x-ray microchannel plate imager with CsI photocathode to improve quantitative precision of framing camera
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
1005
,
165404
(
2021
).
20.
S.
Diebold
, “Proportional counters and microchannel plates,” arXiv:2210.10883 (2022).
21.
M. I.
Mazuritskiy
,
A. M.
Lerer
,
A.
Marcelli
,
S. B.
Dabagov
,
M.
Coreno
,
A.
D’Elia
, and
S. J.
Rezvani
, “
Wave propagation and focusing of soft x-rays by spherical bent microchannel plates
,”
J. Synchrotron Radiat.
28
,
383
391
(
2021
).
22.
S.
Dabagov
and
A.
Dik
, “
Surface channeling of charged and neutral beams in capillary guides
,”
Quantum Beam Sci.
6
,
8
20
(
2022
).
23.
M. I.
Mazuritskiy
,
S. B.
Dabagov
,
A.
Marcelli
,
K.
Dziedzic-Kocurek
, and
A. M.
Lerer
, “
X-ray radiation channeling in micro-channel plates: Spectroscopy with a synchrotron radiation beam
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
355
,
293
296
(
2015
).
24.
M. I.
Mazuritskiy
,
A. M.
Lerer
,
A.
Marcelli
, and
S. B.
Dabagov
, “
Synchrotron radiation transmission by two coupled flat microchannel plates: New opportunities to control the focal spot characteristics
,”
J. Synchrotron Radiat.
29
,
355
362
(
2022
).
25.
M. I.
Mazuritskiy
,
A. M.
Lerer
,
S. B.
Dabagov
, and
A.
Marcelli
, “
Coherent x-ray fluorescent excitation inside MCP microchannels: Axial channeling and wave propagation
,”
J. Surf. Investig.: X-Ray Synchrotron Neutron Tech.
15
,
513
519
(
2021
).
26.
K. A.
Nugent
, “
Coherent methods in the x-ray sciences
,”
Adv. Phys.
59
(
1
),
1
99
(
2010
).
27.
D.
Paterson
,
B. E.
Allman
,
P. J.
McMahon
,
J.
Lin
,
N.
Moldovan
,
K. A.
Nugent
,
I.
McNulty
,
C. T.
Chantler
et al, “
Spatial coherence measurement of x-ray undulator radiation
,”
Opt. Commun.
195
(
1-4
),
79
84
(
2001
).
28.
P.
Skopintsev
,
A.
Singer
,
J.
Bach
,
L.
Müller
,
B.
Beyersdorff
,
S.
Schleitzer
,
O.
Gorobtsov
,
A.
Shabalin
et al, “
Characterization of spatial coherence of synchrotron radiation with non-redundant arrays of apertures
,”
J. Synchrotron Radiat.
21
,
722
728
(
2014
).
29.
I. A.
Vartanyants
,
A.
Singer
,
A. P.
Mancuso
,
O. M.
Yefanov
,
A.
Sakdinawat
,
Y.
Liu
,
E.
Bang
,
G. J.
Williams
et al, “
Coherence properties of individual femtosecond pulses of an x-ray free-electron laser
,”
Phys. Rev. Lett.
107
,
144801
(
2011
).
30.
M. C.
Marconi
,
J. L. A.
Chilla
,
B. R.
Benware
, and
J. J.
Rocca
, “
Measurement of the spatial coherence buildup in a discharge pumped table-top soft x-ray laser
,”
Phys. Rev. Lett.
79
,
2799
2802
(
1997
).
31.
B.
Redding
,
M. A.
Choma
, and
H.
Cao
, “
Spatial coherence of random laser emission
,”
Opt. Lett.
36
,
3404
(
2011
).
32.
J. P.
Sharpe
and
D. A.
Collins
, “
Demonstration of optical spatial coherence using a variable width source
,”
Am. J. Phys.
79
,
554
557
(
2011
).
33.
A.
Marcelli
,
M. I.
Mazuritskiy
,
S. B.
Dabagov
,
D.
Hampai
,
A. M.
Lerer
,
E. A.
Izotova
,
A.
D’Elia
,
S.
Turchini
et al, “
A new XUV optical end-station to characterize compact and flexible photonic devices using synchrotron radiation
,”
J. Instrum.
13
,
C03035
(
2018
).
34.
H.
Barnum
,
M. P.
Müller
, and
C.
Ududec
, “
Higher-order interference and single-system postulates characterizing quantum theory
,”
New J. Phys.
16
,
123029
(
2014
).
35.
U.
Sinha
,
C.
Couteau
,
T.
Jennewein
,
R.
Laflamme
, and
G.
Weihs
, “
Ruling out multi-order interference in quantum mechanics
,”
Science
329
,
418
421
(
2010
).
36.
A.
Derossi
,
F.
Lama
,
M.
Piacentini
,
T.
Prosperi
, and
N.
Zema
, “
High flux and high resolution beamline for elliptically polarized radiation in the vacuum ultraviolet and soft x-ray regions
,”
Rev. Sci. Instrum.
66
,
1718
1720
(
1995
).
37.
D.
Desiderio
,
S.
Difonzo
,
B.
Diviacco
,
W.
Jark
,
J.
Krempasky
,
R.
Krempaska
,
F.
Lama
,
M.
Luce
,
H. C.
Mertins
,
M.
Placentini
,
T.
Prosperi
,
S.
Rinaldi
,
G.
Soullie
,
F.
Schäfers
,
F.
Schmolle
,
L.
Stichauer
,
S.
Turchini
,
R. P.
Walker
, and
N.
Zema
, “
The elletra circular polarization beamline and electromagnetic elliptical wiggler insertion device
,”
Synchrotron Radiat. News
12
,
34
38
(
1999
).
38.
Vladikavkaz Technological Center “BASPIK”
; see http://www.baspik.com/eng/products/nauka/.
39.
J. W.
Goodman
,
Statistical Optics
(
Wiley-Interscience
,
New York
,
1985
), Vol. 1, p.
567
.
You do not currently have access to this content.