The ability to control the optical properties of a material with an electric field has led to optical memory devices, communication systems, optical signal processing, or quantum cryptography. Understanding electro-optic effects, especially in thin films, would improve the efficiency of these applications. In particular, the influence of epitaxial strains is of prime importance. In addition, the active control of these effects would be of great interest to tailor the material to the desired performance. Here, we demonstrate through first-principle calculations that the linear electro-optic response (Pockels effect) of two silicon-compatible ferroelectrics is stable with respect to bi-axial strain and that the electro-optic response can be strongly enhanced through the electrical control of the polarization. We attribute the former to the lack of optical phonon softening and a weak elasto-optic response and the latter to the externally induced softening of a phonon of symmetry A 1. Our results are readily applicable to other polar materials and show that the electro-optic effect can be efficiently engineered to meet the performance criteria of future technologies.

1.
D.
Sando
,
Y.
Yang
,
C.
Paillard
,
B.
Dkhil
,
L.
Bellaiche
, and
V.
Nagarajan
, “
Epitaxial ferroelectric oxide thin films for optical applications
,”
Appl. Phys. Rev.
5
,
041108
(
2018
).
2.
B. E. A. Saleh and M. C. Teich, “Frontmatter and index,” in Fundamentals of Photonics (John Wiley & Sons, Ltd, 1991).
3.
J.
Kerr
, “
XI. A new relation between electricity and light: Dielectrified media birefringent
,”
Philos. Mag. J. Sci.
50
,
337
348
(
1875
).
4.
J.
Kerr
, “
LIV. A new relation between electricity and light: Dielectrified media birefringent (second paper)
,”
Philos. Mag. J. Sci.
50
,
446
458
(
1875
).
5.
B. W.
Wessels
, “
Ferroelectric epitaxial thin films for integrated optics
,”
Annu. Rev. Mater. Res.
37
,
659
679
(
2007
).
6.
S.
Abel
,
S.
Thilo
,
C.
Marchiori
,
C.
Rossel
,
M. D.
Rossell
,
R.
Erni
,
D.
Caimi
,
M.
Sousa
,
A.
Chelnokov
,
B. J.
Offrein
, and
J.
Fompeyrine
, “
A strong electro-optically active lead-free ferroelectric integrated on silicon
,”
Nat. Commun.
4
,
1671
(
2013
).
7.
M.
Zgonik
,
P.
Bernasconi
,
M.
Duelli
,
R.
Schlesser
,
P.
Günter
,
M. H.
Garrett
,
D.
Rytz
,
Y.
Zhu
, and
X.
Wu
, “
Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO 3 crystals
,”
Phys. Rev. B
50
,
5941
5949
(
1994
).
8.
C.
Xiong
,
W. H. P.
Pernice
,
J. H.
Ngai
,
J. W.
Reiner
,
D.
Kumah
,
F. J.
Walker
,
C. H.
Ahn
, and
H. X.
Tang
, “
Active silicon integrated nanophotonics: Ferroelectric BaTiO 3 devices
,”
Nano Lett.
14
,
1419
1425
(
2014
).
9.
K. J.
Kormondy
,
S.
Abel
,
F.
Fallegger
,
Y.
Popoff
,
P.
Ponath
,
A. B.
Posadas
,
M.
Sousa
,
D.
Caimi
,
H.
Siegwart
,
E.
Uccelli
,
L.
Czornomaz
,
C.
Marchiori
,
J.
Fompeyrine
, and
A. A.
Demkov
, “
Analysis of the pockels effect in ferroelectric barium titanate thin films on Si(001)
,”
Microelectron. Eng.
147
,
215
218
(
2015
).
10.
E. H.
Turner
, “
High-frequency electro-optic coefficients of lithium niobate
,”
Appl. Phys. Lett.
8
,
303
304
(
1966
).
11.
E.
Wooten
,
K.
Kissa
,
A.
Yi-Yan
,
E.
Murphy
,
D.
Lafaw
,
P.
Hallemeier
,
D.
Maack
,
D.
Attanasio
,
D.
Fritz
,
G.
McBrien
, and
D.
Bossi
, “
A review of lithium niobate modulators for fiber-optic communications systems
,”
IEEE J. Sel. Top Quantum Electron.
6
,
69
82
(
2000
).
12.
C.
Paillard
,
S.
Prokhorenko
, and
L.
Bellaiche
, “
Strain engineering of electro-optic constants in ferroelectric materials
,”
npj Comput. Mater.
5
,
6
(
2019
).
13.
Z.
Jiang
,
C.
Paillard
,
H. O. H.
Churchill
,
M.
Xia
,
S.
Zhang
,
H.
Xiang
, and
L.
Bellaiche
, “
Large linear and nonlinear electro-optic coefficients in two-dimensional ferroelectrics
,”
Phys. Rev. B
106
,
L081404
L081410
(
2022
).
14.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Böttger
, “
Ferroelectricity in hafnium oxide thin films
,”
Appl. Phys. Lett.
99
,
102903
(
2011
).
15.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Bottger
, “Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors,” in 2011 International Electron Devices Meeting (IEEE, Piscataway, NJ, 2011), pp. 24.5.1–24.5.4.
16.
F.
Delodovici
,
P.
Barone
, and
S.
Picozzi
, “
Finite-size effects on ferroelectricity in rhombohedral HfO2
,”
Phys. Rev. B
106
,
115438
(
2022
).
17.
F.
Delodovici
,
P.
Barone
, and
S.
Picozzi
, “
Trilinear-coupling-driven ferroelectricity in HfO2
,”
Phys. Rev. Mater.
5
,
064405
(
2021
).
18.
S.
Estandía
,
N.
Dix
,
J.
Gazquez
,
I.
Fina
,
J.
Lyu
,
M. F.
Chisholm
,
J.
Fontcuberta
, and
F.
Sánchez
, “
Engineering ferroelectric Hf 0.5 Zr 0.5 O 2 thin films by epitaxial stress
,”
ACS Appl. Electron. Mater.
1
,
1449
1457
(
2019
).
19.
S.
Estandía
,
N.
Dix
,
M. F.
Chisholm
,
I.
Fina
, and
F.
Sánchez
, “
Domain-matching epitaxy of ferroelectric Hf 0.5 Zr 0.5 O 2(111) on La 2 / 3 Sr 1 / 3 MnO 3(001)
,”
Cryst. Growth Des.
20
,
3801
3806
(
2020
).
20.
Y.
Qi
,
S.
Singh
,
C.
Lau
,
F.-T.
Huang
,
X.
Xu
,
F. J.
Walker
,
C. H.
Ahn
,
S.-W.
Cheong
, and
K. M.
Rabe
, “
Stabilization of competing ferroelectric phases of HfO 2 under epitaxial strain
,”
Phys. Rev. Lett.
125
,
257603
257609
(
2020
).
21.
T. D.
Huan
,
V.
Sharma
,
G. A.
Rossetti
, and
R.
Ramprasad
, “
Pathways towards ferroelectricity in hafnia
,”
Phys. Rev. B
90
,
064111
(
2014
).
22.
Y.
Wei
,
P.
Nukala
,
M.
Salverda
,
S.
Matzen
,
H. J.
Zhao
,
J.
Momand
,
A. S.
Everhardt
,
G.
Agnus
,
G. R.
Blake
,
P.
Lecoeur
,
B. J.
Kooi
,
J.
Íñiguez
,
B.
Dkhil
, and
B.
Noheda
, “
A rhombohedral ferroelectric phase in epitaxially strained Hf 0.5 Zr 0.5 O 2 thin films
,”
Nat. Mater.
17
,
1095
1100
(
2018
).
23.
P.
Nukala
,
J.
Antoja-Lleonart
,
Y.
Wei
,
L.
Yedra
,
B.
Dkhil
, and
B.
Noheda
, “
Direct epitaxial growth of polar (1-x) HfO 2–(x) ZrO 2 ultrathin films on silicon
,”
ACS Appl. Electron. Mater.
1
,
2585
2593
(
2019
).
24.
Y.
Zhang
,
Q.
Yang
,
L.
Tao
,
E. Y.
Tsymbal
, and
V.
Alexandrov
, “
Effects of strain and film thickness on the stability of the rhombohedral phase of Hf O 2
,”
Phys. Rev. Appl.
14
,
014068
014076
(
2020
).
25.
S. S.
Cheema
,
N.
Shanker
,
C.-H.
Hsu
,
A.
Datar
,
J.
Bae
,
D.
Kwon
, and
S.
Salahuddin
, “
One nanometer HfO 2-based ferroelectric tunnel junctions on silicon
,”
Adv. Electron. Mater.
8
,
2100499
(
2022
).
26.
I.
Fina
and
F.
Sánchez
, “
Epitaxial ferroelectric HfO 2 films: Growth, properties, and devices
,”
ACS Appl. Electron. Mater.
3
,
1530
1549
(
2021
).
27.
M. H.
Park
,
Y. H.
Lee
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
,
J.
Müller
,
A.
Kersch
,
U.
Schroeder
,
T.
Mikolajick
, and
C. S.
Hwang
, “
Ferroelectricity and antiferroelectricity of doped thin HfO 2-based films
,”
Adv. Mater.
27
,
1811
1831
(
2015
).
28.
S. E.
Reyes-Lillo
,
K. F.
Garrity
, and
K. M.
Rabe
, “
Antiferroelectricity in thin-film ZrO 2 from first principles
,”
Phys. Rev. B
90
,
140103
140108
(
2014
).
29.
P. D.
Lomenzo
,
M.
Materano
,
T.
Mittmann
,
P.
Buragohain
,
A.
Gruverman
,
T.
Kiguchi
,
T.
Mikolajick
, and
U.
Schroeder
, “
Harnessing phase transitions in antiferroelectric ZrO 2 using the size effect
,”
Adv. Electron. Mater.
8
,
2100556
(
2022
).
30.
D.
Lehninger
,
D.
Rafaja
,
J.
Wünsche
,
F.
Schneider
,
J.
von Borany
, and
J.
Heitmann
, “
Formation of orthorhombic (Zr,Ta) O 2 in thin Zr-Ta-O films
,”
Appl. Phys. Lett.
110
,
262903
(
2017
).
31.
S.
Kondo
,
R.
Shimura
,
T.
Teranishi
,
A.
Kishimoto
,
T.
Nagasaki
,
H.
Funakubo
, and
T.
Yamada
, “
Linear electro-optic effect in ferroelectric HfO 2-based epitaxial thin films
,”
Jpn. J. Appl. Phys.
60
,
070905
(
2021
).
32.
A.
El Boutaybi
,
P.
Karamanis
,
T.
Maroutian
,
S.
Matzen
,
L.
Vivien
,
P.
Lecoeur
, and
M.
Rérat
, “
Electro-optic properties of ZrO 2, HfO 2, and LiNbO 3 ferroelectric phases: A comparative density functional study
,”
Phys. Rev. B
107
,
045140
045150
(
2023
).
33.
S.
Liu
and
B. M.
Hanrahan
, “
Effects of growth orientations and epitaxial strains on phase stability of HfO 2 thin films
,”
Phys. Rev. Mater.
3
,
054404
(
2019
).
34.
M.
Hoffmann
,
U.
Schroeder
,
T.
Schenk
,
T.
Shimizu
,
H.
Funakubo
,
O.
Sakata
,
D.
Pohl
,
M.
Drescher
,
C.
Adelmann
,
R.
Materlik
,
A.
Kersch
, and
T.
Mikolajick
, “
Stabilizing the ferroelectric phase in doped hafnium oxide
,”
J. Appl. Phys.
118
,
072006
(
2015
).
35.
R.
Batra
,
T. D.
Huan
,
J. L.
Jones
,
G. J.
Rossetti
, and
R.
Ramprasad
, “
Factors favoring ferroelectricity in hafnia: A first-principles computational study
,”
J. Phys. Chem. C
121
,
4139
4145
(
2017
).
36.
U.
Schröder
,
C.
Richter
,
M. H.
Park
,
T.
Schenk
,
M.
Pešić
,
M.
Hoffmann
,
F. P. G.
Fengler
,
D.
Pohl
,
B.
Rellinghaus
,
C.
Zhou
,
C.-C.
Chung
,
J. L.
Jones
, and
T.
Mikolajick
, “
Lanthanum-doped hafnium oxide: A robust ferroelectric material
,”
Inorg. Chem.
57
,
2752
2765
(
2018
).
37.
P.
Nukala
,
M.
Ahmadi
,
Y.
Wei
,
S.
de Graaf
,
E.
Stylianidis
,
T.
Chakrabortty
,
S.
Matzen
,
H. W.
Zandbergen
,
A.
Björling
,
D.
Mannix
,
D.
Carbone
,
B.
Kooi
, and
B.
Noheda
, “
Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices
,”
Science
372
,
630
635
(
2021
).
38.
R.
He
,
H.
Wu
,
S.
Liu
,
H.
Liu
, and
Z.
Zhong
, “
Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies
,”
Phys. Rev. B
104
,
L180102
L180108
(
2021
).
39.
M.
Veithen
,
X.
Gonze
, and
P.
Ghosez
, “
First-principles study of the electro-optic effect in ferroelectric oxides
,”
Phys. Rev. Lett.
93
,
187401
(
2004
).
40.
M.
Veithen
,
X.
Gonze
, and
P.
Ghosez
, “
Nonlinear optical susceptibilities, raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory
,”
Phys. Rev. B
71
,
125107
125121
(
2005
).
41.
X.
Gonze
,
B.
Amadon
,
P.-M.
Anglade
,
J.-M.
Beuken
,
F.
Bottin
,
P.
Boulanger
,
F.
Bruneval
,
D.
Caliste
,
R.
Caracas
,
M.
Côté
,
T.
Deutsch
,
L.
Genovese
,
P.
Ghosez
,
M.
Giantomassi
,
S.
Goedecker
,
D.
Hamann
,
P.
Hermet
,
F.
Jollet
,
G.
Jomard
,
S.
Leroux
,
M.
Mancini
,
S.
Mazevet
,
M.
Oliveira
,
G.
Onida
,
Y.
Pouillon
,
T.
Rangel
,
G.-M.
Rignanese
,
D.
Sangalli
,
R.
Shaltaf
,
M.
Torrent
,
M.
Verstraete
,
G.
Zerah
, and
J.
Zwanziger
, “
Abinit: First-principles approach to material and nanosystem properties
,”
Comput. Phys. Commun.
180
,
2582
2615
(
2009
).
42.
X.
Gonze
, “
First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm
,”
Phys. Rev. B
55
,
10337
10354
(
1997
).
43.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
44.
M. I.
Aroyo
,
A.
Kirov
,
C.
Capillas
,
J.
Perez-Mato
, and
H.
Wondratschek
, “
Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups
,”
Acta Crystallogr., Sect. A: Found. Crystallogr.
62
,
115
128
(
2006
).
45.
J. F.
Nye
et al.,
Physical Properties of Crystals: Their Representation by Tensors and Matrices
(
Oxford University Press
,
1985
).
46.
Z.
Jiang
,
C.
Paillard
,
D.
Vanderbilt
,
H.
Xiang
, and
L.
Bellaiche
, “
Designing multifunctionality via assembling dissimilar materials: Epitaxial AlN/ScN superlattices
,”
Phys. Rev. Lett.
123
,
096801
(
2019
).
47.
Z.
Jiang
,
C.
Paillard
,
H.
Xiang
, and
L.
Bellaiche
, “
Linear versus nonlinear electro-optic effects in materials
,”
Phys. Rev. Lett.
125
,
017401
(
2020
).
48.
I.
Petousis
,
D.
Mrdjenovich
,
E.
Ballouz
,
M.
Liu
,
D.
Winston
,
W.
Chen
,
T.
Graf
,
T. D.
Schladt
,
K. A.
Persson
, and
F. B.
Prinz
, “
High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials
,”
Sci. Data
4
,
1
12
(
2017
).
49.
P.
Zubko
,
J. C.
Wojdeł
,
M.
Hadjimichael
,
S.
Fernandez-Pena
,
A.
Sené
,
I.
Luk’yanchuk
,
J.-M.
Triscone
, and
J.
Íñiguez
, “
Negative capacitance in multidomain ferroelectric superlattices
,”
Nature
534
,
524
528
(
2016
).
50.
J.
Íñiguez
,
P.
Zubko
,
I.
Luk’yanchuk
, and
A.
Cano
, “
Ferroelectric negative capacitance
,”
Nat. Rev. Mater.
4
,
243
(
2019
).
51.
J.
Müller
,
P.
Polakowski
,
S.
Mueller
, and
T.
Mikolajick
, “
Ferroelectric hafnium oxide based materials and devices: Assessment of current status and future prospects
,”
ECS J. Solid State Sci. Technol.
4
,
N30
(
2015
).
52.
S.
Migita
,
H.
Ota
,
H.
Yamada
,
A.
Sawa
, and
A.
Toriumi
, “Thickness-independent behavior of coercive field in HfO2-based ferroelectrics,” in 2017 IEEE Electron Devices Technology and Manufacturing Conference (EDTM) (IEEE, 2017), pp. 255–256.

Supplementary Material

You do not currently have access to this content.