The occurrence of atrial fibrillation (AF), one of the most socially significant arrhythmias, is associated with the presence of areas of fibrosis. Fibrosis introduces conduction heterogeneity into the cardiac tissue and, thus, may be a substrate for spiral wave reentry, which provokes the onset of AF and is often associated with its persistence. Despite results from computer and animal models of cardiac tissues, data on the conditions under which microreentries occur in human tissues are limited. In this work, we conducted a study of the new approach to modeling the fibrous atrial tissue, which takes into account the cellular structure and conduction in fibrosis areas. Using the Potts model, we created a realistic texture of atrial tissues remodeled by fibroblasts and showed the presence of pathways in such a system with a low proportion of fibroblasts. Our study revealed the relationship between the shape of the cells’ action potential, their location in the tissue, and the direction of the wave propagation. The wavefront obtained in the model creates a dynamic heterogeneity of the tissue, which affects the migration and pinning of spiral waves, and explains the formation of microreentries in the cardiac tissue. In the future, such a model can become a potential tool for predictive modeling of AF and the search for ablation target identification.

1.
G.
Hindricks
et al, “
2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-thoracic Surgery (EACTS): The task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC
,”
Eur. Heart J.
42
(
5
),
373
498
(
2021
).
2.
C. A.
Morillo
et al, “
Atrial fibrillation: The current epidemic
,”
J. Geriatr. Cardiol.
14
(
3
),
195
(
2017
).
3.
H.
Calkins
et al, “
2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation
Ep Eur.
20
(
1
),
e1
e160
(
2018
).
4.
S. S.
Chugh
et al, “
Worldwide epidemiology of atrial fibrillation: A global burden of disease 2010 study
,”
Circulation
129
(
8
),
837
847
(
2014
).
5.
M.
Haissaguerre
et al, “
Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins
,”
N. Engl. J. Med.
339
(
10
),
659
666
(
1998
).
6.
B. J.
Hansen
et al, “
Human atrial fibrillation drivers resolved with integrated functional and structural imaging to benefit clinical mapping
,”
JACC Clin. Electrophysiol.
4
(
12
),
1501
1515
(
2018
).
7.
P. M.
Boyle
et al, “
The fibrotic substrate in persistent atrial fibrillation patients: Comparison between predictions from computational modeling and measurements from focal impulse and rotor mapping
,”
Front. Physiol.
9
,
1151
(
2018
).
8.
D. G.
Laţcu
et al, “
Sequential ultrahigh-density contact mapping of persistent atrial fibrillation: An efficient technique for driver identification
,”
J. Cardiovasc. Electrophysiol.
32
(
1
),
29
40
(
2021
).
9.
N.
Kudryashova
et al, “
Self-organization of conducting pathways explains electrical wave propagation in cardiac tissues with high fraction of non-conducting cells
,”
PLoS Comput. Biol.
15
(
3
),
e1006597
(
2019
).
10.
S.
Alonso
,
R. W.
Dos Santos
, and
M.
Bär
, “
Reentry and ectopic pacemakers emerge in a three-dimensional model for a slab of cardiac tissue with diffuse microfibrosis near the percolation threshold
,”
PloS One
11
(
11
),
e0166972
(
2016
).
11.
C. H.
Roney
et al, “
Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms
,”
EP Eur.
18
(
suppl_4
),
iv146
iv155
(
2016
).
12.
E.
Vigmond
et al, “
Percolation as a mechanism to explain atrial fractionated electrograms and reentry in a fibrosis model based on imaging data
,”
Heart Rhythm
13
(
7
),
1536
1543
(
2016
).
13.
A. G.
Kléber
and
Y.
Rudy
, “
Basic mechanisms of cardiac impulse propagation and associated arrhythmias
,”
Physiol. Rev.
84
(
2
),
431
488
(
2004
).
14.
M. S.
Spach
et al, “
The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents
,”
Circ. Res.
48
(
1
),
39
54
(
1981
).
15.
S.
Zahid
et al, “
Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern
,”
Cardiovasc. Res.
110
(
3
),
443
454
(
2016
).
16.
J.
Sánchez
and
A.
Loewe
, “
A review of healthy and fibrotic myocardium microstructure modeling and corresponding intracardiac electrograms
,”
Front. Physiol.
13
, 916 (
2022
).
17.
A.
Jadidi
et al, “
Specific electrogram characteristics identify the extra-pulmonary vein arrhythmogenic sources of persistent atrial fibrillation–characterization of the arrhythmogenic electrogram patterns during atrial fibrillation and sinus rhythm
,”
Sci. Rep.
10
(
1
),
9147
(
2020
).
18.
C.
Delgado
et al, “
Directional differences in excitability and margin of safety for propagation in sheep ventricular epicardial muscle
,”
Circ. Res.
67
(
1
),
97
110
(
1990
).
19.
A. V.
Panfilov
and
J. P.
Keener
, “
Generation of reentry in anisotropic myocardium
,”
J. Cardiovasc. Electrophysiol.
4
(
4
),
412
421
(
1993
).
20.
T.
Kondo
et al, “
Electrophysiologic effects of sodium channel blockade on anisotropic conduction and conduction block in canine myocardium: Preferential slowing of longitudinal conduction by flecainide versus disopyramide or lidocaine
,”
J. Am. Coll. Cardiol.
29
(
7
),
1639
1644
(
1997
).
21.
M.
Haïssaguerre
et al, “
Multisite conduction block in the epicardial substrate of brugada syndrome
,”
Heart Rhythm
19
(
3
),
417
426
(
2022
).
22.
C.
Yamamoto
and
N. A.
Trayanova
, “
Atrial fibrillation: Insights from animal models, computational modeling, and clinical studies
,”
EBioMedicine
85
,
104310
(
2022
).
23.
P. M.
Boyle
et al, “
Computationally guided personalized targeted ablation of persistent atrial fibrillation
,”
Nat. Biomed. Eng.
3
(
11
),
870
879
(
2019
).
24.
R. L.
Ali
et al, “
Arrhythmogenic propensity of the fibrotic substrate after atrial fibrillation ablation: A longitudinal study using magnetic resonance imaging-based atrial models
,”
Cardiovasc. Res.
115
(
12
),
1757
1765
(
2019
).
25.
S.
Honarbakhsh
et al, “
Validation of a novel mapping system and utility for mapping complex atrial tachycardias
,”
J. Cardiovasc. Electrophysiol.
29
(
3
),
395
403
(
2018
).
26.
B. J.
Hansen
,
J.
Zhao
, and
V. V.
Fedorov
, “
Fibrosis and atrial fibrillation: Computerized and optical mapping: A view into the human atria at submillimeter resolution
,”
JACC Clin. Electrophysiol.
3
(
6
),
531
546
(
2017
).
27.
N.
Kudryashova
et al, “
Virtual cardiac monolayers for electrical wave propagation
,”
Sci. Rep.
7
(
1
),
7887
(
2017
).
28.
J.
Lin
et al, “
Ephaptic coupling is a mechanism of conduction reserve during reduced gap junction coupling
,”
Front. Physiol.
13
, 848019 (
2022
).
29.
N. N.
Agladze
et al, “
Synchronization of excitable cardiac cultures of different origin
,”
Biomater. Sci.
5
(
9
),
1777
1785
(
2017
).
30.
I. S.
Erofeev
and
K. I.
Agladze
, “
Two models of anisotropic propagation of a cardiac excitation wave
,”
JETP Lett.
100
(
5
),
351
354
(
2014
).
31.
M.
Courtemanche
,
R. J.
Ramirez
, and
S.
Nattel
, “
Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model
,”
Am. J. Physiol. Heart Circ. Physiol.
275
(
1
),
H301
H321
(
1998
).
32.
T.
De Coster
et al, “
Arrhythmogenicity of fibro-fatty infiltrations
,”
Sci. Rep.
8
(
1
),
2050
(
2018
).
33.
M.
Clerx
,
P.
Collins
,
E.
De Lange
, and
P. G.
Volders
, “
Myokit: A simple interface to cardiac cellular electrophysiology
,”
Prog. Biophys. Mol. Biol.
120
(
1–3
),
100
114
(
2016
).
34.
J. P.
Ugarte
et al, “
Atrial rotor dynamics under complex fractional order diffusion
,”
Front. Physiol.
9
,
975
(
2018
).
35.
G.
Guo
,
L.
Chen
,
M.
Rao
,
K.
Chen
,
J.
Song
, and
S.
Hu
, “
A modifed method for isolation of human cardiomyocytes to model cardiac diseases
,”
J. Transl. Med.
16
,
288
(
2018
).
36.
H.
Calkins
et al, “
2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation
,”
Heart Rhythm
14
(
10
),
e275
e444
(
2017
).
37.
M.
Courtemanche
,
R. J.
Ramirez
, and
S.
Nattel
, “
Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: Insights from a mathematical model
,”
Cardiovasc. Res.
42
(
2
),
477
489
(
1999
).
38.
D. C.
Kernik
et al, “
A computational model of induced pluripotent stem-cell derived cardiomyocytes incorporating experimental variability from multiple data sources
,”
J. Physiol.
597
(
17
),
4533
4564
(
2019
).
39.
K. H.
Ten Tusscher
and
A. V.
Panfilov
, “
Alternans and spiral breakup in a human ventricular tissue model
,”
Am. J. Physiol. Heart Circ. Physiol.
291
(
3
),
H1088
H1100
(
2006
).
40.
C.
Dupont
,
K.
Agladze
, and
V.
Krinsky
, “
Excitable medium with left–right symmetry breaking
,”
Phys. A
249
(
1–4
),
47
52
(
1998
).
41.
S.
Hussaini
et al, “
Drift and termination of spiral waves in optogenetically modified cardiac tissue at sub-threshold illumination
,”
eLife
10
,
e59954
(
2021
).
42.
T.
De Coster
et al, “
Myocyte remodeling due to fibro-fatty infiltrations influences arrhythmogenicity
,”
Front. Physiol.
9
,
1381
(
2018
).
43.
A.
Panfilov
and
P.
Hogeweg
, “
Spiral breakup in a modified FitzHugh-Nagumo model
,”
Phys. Lett. A
176
(
5
),
295
299
(
1993
).
44.
O.
Solovyova
,
L. B.
Katsnelson
,
P.
Kohl
,
A. V.
Panfilov
,
A. K.
Tsaturyan
, and
P. B.
Tsyvian
, “
Mechano-electric heterogeneity of the myocardium as a paradigm of its function
,”
Prog. Biophys. Mol. Biol.
120
(
1–3
),
249
254
(
2016
).
45.
A.
Dokuchaev
,
A. V.
Panfilov
, and
O.
Solovyova
, “
Myocardial fibrosis in a 3D model: Effect of texture on wave propagation
,”
Mathematics
8
(
8
),
1352
(
2020
).
46.
R.
Rokeakh
,
T.
Nesterova
,
K.
Ushenin
,
E.
Polyakova
,
D.
Sonin
,
M.
Galagudza
, and
O.
Solovyova
, “
Anatomical model of rat ventricles to study cardiac arrhythmias under infarction injury
,”
Mathematics
9
(
20
),
2604
(
2021
).
47.
P.
Konovalov
,
D.
Mangileva
,
A.
Dokuchaev
,
O.
Solovyova
, and
A. V.
Panfilov
, “
Rotational activity around an obstacle in 2D cardiac tissue in presence of cellular heterogeneity
,”
Mathematics
9
(
23
),
3090
(
2021
).
48.
M. E.
Farquhar
,
K.
Burrage
,
R. W.
Dos Santos
,
A.
Bueno-Orovio
, and
B. A.
Lawson
, “
Graph-based homogenisation for modelling cardiac fibrosis
,”
J. Comput. Phys.
459
,
111126
(
2022
).
49.
B. A.
Lawson
et al, “
Homogenisation for the monodomain model in the presence of microscopic fibrotic structures
,”
Commun. Nonlinear Sci. Numer. Simul.
116
,
106794
(
2023
).
50.
A.
Bueno-Orovio
and
K.
Burrage
, “The complex-order fractional Laplacian: Stable operators, spectral methods, and applications to heterogeneous media” (2021); available at https://www.preprints.org/manuscript/202107.0569/v1
51.
K. H.
Ten Tusscher
and
A. V.
Panfilov
, “
Influence of diffuse fibrosis on wave propagation in human ventricular tissue
,”
EP Eur.
9
(
suppl_6
),
vi38
vi45
(
2007
).
52.
N. N.
Kudryashova
,
I. V.
Kazbanov
,
A. V.
Panfilov
, and
K. I.
Agladze
, “
Conditions for waveblock due to anisotropy in a model of human ventricular tissue
,”
PloS One
10
(
11
),
e0141832
(
2015
).
You do not currently have access to this content.