Magnetic garnet thin films exhibiting perpendicular magnetic anisotropy (PMA) and ultra-low damping have recently been explored for applications in magnonics and spintronics. Here, we present a systematic study of PMA and magnetic damping in bismuth-substituted yttrium iron garnet (Bi-YIG) films grown on sGGG (111) substrates by pulsed laser deposition. Films with thicknesses ranging from 5 to 160 nm are investigated. Structural characterization using x-ray diffraction and reciprocal space mapping demonstrates the pseudomorphic growth of the films. The films exhibit perpendicular magnetic anisotropy up to 160 nm thickness, with the zero-magnetic field state changing from fully saturated for low thicknesses to a dense magnetic stripe pattern for thicker films. The films show a ferromagnetic resonance (FMR) linewidth of 100–200 MHz with a Gilbert damping constant of the order of 4 × 10 3. The broad FMR linewidth is caused by inhomogeneities of magnetic properties on micrometer length scales.

1.
B.
Dieny
and
M.
Chshiev
, “
Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications
,”
Rev. Mod. Phys.
89
,
025008
(
2017
).
2.
M.
Cubukcu
,
O.
Boulle
,
N.
Mikuszeit
,
C.
Hamelin
,
T.
Brächer
,
N.
Lamard
,
M. C.
Cyrille
,
L.
Buda-Prejbeanu
,
K.
Garello
,
I. M.
Miron
,
O.
Klein
,
G.
de Loubens
,
V. V.
Naletov
,
J.
Langer
,
B.
Ocker
,
P.
Gambardella
, and
G.
Gaudin
, “
Ultra-fast perpendicular spin–orbit torque MRAM
,”
IEEE Trans. Magn.
54
,
1
4
(
2018
).
3.
Y.
Zhang
,
W.
Zhao
,
J. O.
Klein
,
C.
Chappert
, and
D.
Ravelosona
, “
Peristaltic perpendicular-magnetic-anisotropy racetrack memory based on chiral domain wall motions
,”
J. Phys. D: Appl. Phys.
48
,
105001
(
2015
).
4.
R.
Tomasello
,
E.
Martinez
,
R.
Zivieri
,
L.
Torres
,
M.
Carpentieri
, and
G.
Finocchio
, “
A strategy for the design of skyrmion racetrack memories
,”
Sci. Rep.
4
,
6784
(
2014
).
5.
W.
Kang
,
Y.
Huang
,
C.
Zheng
,
W.
Lv
,
N.
Lei
,
Y.
Zhang
,
X.
Zhang
,
Y.
Zhou
, and
W.
Zhao
, “
Voltage controlled magnetic skyrmion motion for racetrack memory
,”
Sci. Rep.
6
,
23164
(
2016
).
6.
X.
Zhang
,
M.
Ezawa
, and
Y.
Zhou
, “
Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions
,”
Sci. Rep.
5
,
9400
(
2015
).
7.
S. H. C.
Baek
,
K. W.
Park
,
D. S.
Kil
,
Y.
Jang
,
J.
Park
,
K. J.
Lee
, and
B. G.
Park
, “
Complementary logic operation based on electric-field controlled spin–orbit torques
,”
Nat. Electron.
1
,
398
403
(
2018
).
8.
J.
Han
,
P.
Zhang
,
J. T.
Hou
,
S. A.
Siddiqui
, and
L.
Liu
, “
Mutual control of coherent spin waves and magnetic domain walls in a magnonic device
,”
Science
366
,
1121
1125
(
2019
).
9.
Y.
Fan
,
M. J.
Gross
,
T.
Fakhrul
,
J.
Finley
,
J. T.
Hou
,
S.
Ngo
,
L.
Liu
, and
C. A.
Ross
, “
Coherent magnon-induced domain-wall motion in a magnetic insulator channel
,”
Nat. Nanotechnol.
18
,
1000
(
2023
).
10.
S.
Klingler
,
P.
Pirro
,
T.
Brächer
,
B.
Leven
,
B.
Hillebrands
, and
A. V.
Chumak
, “
Spin-wave logic devices based on isotropic forward volume magnetostatic waves
,”
Appl. Phys. Lett.
106
,
212406
(
2015
).
11.
O.
Zografos
,
S.
Dutta
,
M.
Manfrini
,
A.
Vaysset
,
B.
Sorée
,
A.
Naeemi
,
P.
Raghavan
,
R.
Lauwereins
, and
I. P.
Radu
, “
Non-volatile spin wave majority gate at the nanoscale
,”
AIP Adv.
7
,
056020
(
2017
).
12.
C.
Liu
,
J.
Chen
,
T.
Liu
,
F.
Heimbach
,
H.
Yu
,
Y.
Xiao
,
J.
Hu
,
M.
Liu
,
H.
Chang
,
T.
Stueckler
,
S.
Tu
,
Y.
Zhang
,
Y.
Zhang
,
P.
Gao
,
Z.
Liao
,
D.
Yu
,
K.
Xia
,
N.
Lei
,
W.
Zhao
, and
M.
Wu
, “
Long-distance propagation of short-wavelength spin waves
,”
Nat. Commun.
9
,
738
(
2018
).
13.
A. A.
Serga
,
A. V.
Chumak
, and
B.
Hillebrands
, “
YIG magnonics
,”
J. Phys. D: Appl. Phys.
43
,
264002
(
2010
).
14.
J.
Fu
,
M.
Hua
,
X.
Wen
,
M.
Xue
,
S.
Ding
,
M.
Wang
,
P.
Yu
,
S.
Liu
,
J.
Han
,
C.
Wang
,
H.
Du
,
Y.
Yang
, and
J.
Yang
, “
Epitaxial growth of Y 3 Fe 5 O 12 thin films with perpendicular magnetic anisotropy
,”
Appl. Phys. Lett.
110
,
202403
(
2017
).
15.
S.
Chen
,
Y.
Xie
,
Y.
Yang
,
D.
Gao
,
D.
Liu
,
L.
Qin
,
W.
Yan
,
B.
Tan
,
Q.
Chen
,
T.
Gong
,
E.
Li
,
L.
Bi
,
T.
Liu
, and
L.
Deng
, “
The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
,”
Chin. Phys. B
31
,
048503
(
2022
).
16.
G.
Li
,
H.
Bai
,
J.
Su
,
Z. Z.
Zhu
,
Y.
Zhang
, and
J. W.
Cai
, “
Tunable perpendicular magnetic anisotropy in epitaxial Y 3 Fe 5 O 12 films
,”
APL Mater.
7
,
041104
(
2019
).
17.
J.
Ding
,
C.
Liu
,
Y.
Zhang
,
U.
Erugu
,
Z.
Quan
,
R.
Yu
,
E.
McCollum
,
S.
Mo
,
S.
Yang
,
H.
Ding
,
X.
Xu
,
J.
Tang
,
X.
Yang
, and
M.
Wu
, “
Nanometer-thick yttrium iron garnet films with perpendicular anisotropy and low damping
,”
Phys. Rev. Appl.
14
,
014017
(
2020
).
18.
L.
Soumah
,
N.
Beaulieu
,
L.
Qassym
,
C.
Carrétéro
,
E.
Jacquet
,
R.
Lebourgeois
,
J. B.
Youssef
,
P.
Bortolotti
,
V.
Cros
, and
A.
Anane
, “
Ultra-low damping insulating magnetic thin films get perpendicular
,”
Nat. Commun.
9
,
3355
(
2018
).
19.
X.
Liu
,
Q.
Yang
,
D.
Zhang
,
Y.
Wu
, and
H.
Zhang
, “
Magnetic properties of bismuth substituted yttrium iron garnet film with perpendicular magnetic anisotropy
,”
AIP Adv.
9
,
115001
(
2019
).
20.
Y.
Lin
,
L.
Jin
,
H.
Zhang
,
Z.
Zhong
,
Q.
Yang
,
Y.
Rao
, and
M.
Li
, “
Bi-YIG ferrimagnetic insulator nanometer films with large perpendicular magnetic anisotropy and narrow ferromagnetic resonance linewidth
,”
J. Magn. Magn. Mater.
496
,
165886
(
2020
).
21.
Y.
Jia
,
Z.
Liang
,
H.
Pan
,
Q.
Wang
,
Q.
Lv
,
Y.
Yan
,
F.
Jin
,
D.
Hou
,
L.
Wang
, and
W.
Wu
, “
Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y 3 Fe 5 O 12(111) films
,”
Chin. Phys. B
32
,
027501
(
2023
).
22.
C. T.
Wang
,
X. F.
Liang
,
Y.
Zhang
,
X.
Liang
,
Y. P.
Zhu
,
J.
Qin
,
Y.
Gao
,
B.
Peng
,
N. X.
Sun
, and
L.
Bi
, “
Controlling the magnetic anisotropy in epitaxial Y 3 Fe 5 O 12 films by manganese doping
,”
Phys. Rev. B
96
,
224403
(
2017
).
23.
E.
Lage
,
L.
Beran
,
A. U.
Quindeau
,
L.
Ohnoutek
,
M.
Kucera
,
R.
Antos
,
S. R.
Sani
,
G. F.
Dionne
,
M.
Veis
, and
C. A.
Ross
, “
Temperature-dependent Faraday rotation and magnetization reorientation in cerium-substituted yttrium iron garnet thin films
,”
APL Mater.
5
,
036104
(
2017
).
24.
M.
Kuila
,
A.
Sagdeo
,
L. A.
Longchar
,
R. J.
Choudhary
,
S.
Srinath
, and
V. R.
Reddy
, “
Robust perpendicular magnetic anisotropy in Ce substituted yttrium iron garnet epitaxial thin films
,”
J. Appl. Phys.
131
,
203901
(
2022
).
25.
T.
Böttcher
,
M.
Ruhwedel
,
K. O.
Levchenko
,
Q.
Wang
,
H. L.
Chumak
,
M. A.
Popov
,
I. V.
Zavislyak
,
C.
Dubs
,
O.
Surzhenko
,
B.
Hillebrands
,
A. V.
Chumak
, and
P.
Pirro
, “
Fast long-wavelength exchange spin waves in partially compensated Ga:YIG
,”
Appl. Phys. Lett.
120
,
102401
(
2022
).
26.
D.
Lacklison
,
G.
Scott
,
H.
Ralph
, and
J.
Page
, “
Garnets with high magnetooptic figures of merit in the visible region
,”
IEEE Trans. Magn.
9
,
457
460
(
1973
).
27.
C. N.
Wu
,
C. C.
Tseng
,
Y. T.
Fanchiang
,
C. K.
Cheng
,
K. Y.
Lin
,
S. L.
Yeh
,
S. R.
Yang
,
C. T.
Wu
,
T.
Liu
,
M.
Wu
,
M.
Hong
, and
J.
Kwo
, “
High-quality thulium iron garnet films with tunable perpendicular magnetic anisotropy by off-axis sputtering—Correlation between magnetic properties and film strain
,”
Sci. Rep.
8
,
11087
(
2018
).
28.
E. R.
Rosenberg
,
L.
Beran
,
C. O.
Avci
,
C.
Zeledon
,
B.
Song
,
C.
Gonzalez-Fuentes
,
J.
Mendil
,
P.
Gambardella
,
M.
Veis
,
C.
Garcia
,
G. S. D.
Beach
, and
C. A.
Ross
, “
Magnetism and spin transport in rare-earth-rich epitaxial terbium and europium iron garnet films
,”
Phys. Rev. Mater.
2
,
094405
(
2018
).
29.
V. H.
Ortiz
,
M.
Aldosary
,
J.
Li
,
Y.
Xu
,
M. I.
Lohmann
,
P.
Sellappan
,
Y.
Kodera
,
J. E.
Garay
, and
J.
Shi
, “
Systematic control of strain-induced perpendicular magnetic anisotropy in epitaxial europium and terbium iron garnet thin films
,”
APL Mater.
6
,
121113
(
2018
).
30.
J. J.
Bauer
,
E. R.
Rosenberg
, and
C. A.
Ross
, “
Perpendicular magnetic anisotropy and spin mixing conductance in polycrystalline europium iron garnet thin films
,”
Appl. Phys. Lett.
114
,
052403
(
2019
).
31.
L.
Caretta
,
E.
Rosenberg
,
F.
Büttner
,
T.
Fakhrul
,
P.
Gargiani
,
M.
Valvidares
,
Z.
Chen
,
P.
Reddy
,
D. A.
Muller
,
C. A.
Ross
, and
G. S. D.
Beach
, “
Interfacial Dzyaloshinskii-Moriya interaction arising from rare-earth orbital magnetism in insulating magnetic oxides
,”
Nat. Commun.
11
,
1090
(
2020
).
32.
H.
Wang
,
J.
Chen
,
T.
Liu
,
J.
Zhang
,
K.
Baumgaertl
,
C.
Guo
,
Y.
Li
,
C.
Liu
,
P.
Che
,
S.
Tu
,
S.
Liu
,
P.
Gao
,
X.
Han
,
D.
Yu
,
M.
Wu
,
D.
Grundler
, and
H.
Yu
, “
Chiral spin-wave velocities induced by all-garnet interfacial Dzyaloshinskii-Moriya interaction in ultrathin yttrium iron garnet films
,”
Phys. Rev. Lett.
124
,
027203
(
2020
).
33.
S.
Vélez
,
S.
Ruiz-Gómez
,
J.
Schaab
,
E.
Gradauskaite
,
M. S.
Wörnle
,
P.
Welter
,
B. J.
Jacot
,
C. L.
Degen
,
M.
Trassin
,
M.
Fiebig
, and
P.
Gambardella
, “
Current-driven dynamics and ratchet effect of skyrmion bubbles in a ferrimagnetic insulator
,”
Nat. Nanotechnol.
17
,
834
841
(
2022
).
34.
M.
Niyaifar
,
Ramani
,
M. C.
Radhakrishna
,
A.
Hassnpour
,
M.
Mozaffari
, and
J.
Amighian
, “The correlation of lattice constant with superexchange interaction in Bi-YIG fabricated by mechanochemical processing,”
Hyperfine Interact.
184, 161–166 (2008).
35.
L.
Soumah
, “Pulsed laser deposition of substituted thin garnet films for magnonic applications,” Ph.D. thesis (Université Paris-Saclay, 2019).
36.
H. M.
Chou
and
E. D.
Case
, “
Characterization of some mechanical properties of polycrystalline yttrium iron garnet (YIG) by non-destructive methods
,”
J. Mater. Sci. Lett.
7
,
1217
1220
(
1988
).
37.
I.
Nadinov
,
O.
Kovalenko
,
J. L.
Rehspringer
,
M.
Vomir
, and
L.
Mager
, “
Limits of the magneto-optical properties of Bi:YIG films prepared on silica by metal organic decomposition
,”
Ceram. Int.
45
,
21409
21412
(
2019
).
38.
A.
Krysztofik
,
N.
Kuznetsov
,
H.
Qin
,
L.
Flajšman
,
E.
Coy
, and
S.
van Dijken
, “
Tuning of magnetic damping in Y 3 Fe 5 O 12/metal bilayers for spin-wave conduit termination
,”
Materials
15
,
2814
(
2022
).
39.
H.
Qin
,
R. B.
Holländer
,
L.
Flajšman
,
F.
Hermann
,
R.
Dreyer
,
G.
Woltersdorf
, and
S.
van Dijken
, “
Nanoscale magnonic Fabry-Pérot resonator for low-loss spin-wave manipulation
,”
Nat. Commun.
12
,
2293
(
2021
).
You do not currently have access to this content.