Molecular lasers pumped by quantum cascade laser (QCL) open new possibilities for THz generation and its numerous applications, in particular, for high resolution molecular spectroscopy. In this article, a THz water laser pumped by a mid-infrared QCL was demonstrated using the broad tunability of the pump laser. Twenty D 2 O laser lines were measured under a continuous wave pumping regime, in a spectral range expending from 63 to 177 cm 1 (1.9–5.3 THz), and with an output power ranging from tens to hundreds of μW. This letter contains a description of the experimental setup used to produce the THz laser radiation and a comparison of the measured output power with a molecular gain factor used to sort out the most favorable laser lines. In addition to the measured laser transitions, a complete list of laser frequencies together with their corresponding molecular gain is given in the supplementary material, for both H 2 O and D 2 O isotopologues excited in their bending and stretching vibrational states.

1.
R.
Güsten
,
H.
Wiesemeyer
,
K. M.
Menten
,
U. U.
Graf
,
K.
Jacobs
,
B.
Klein
,
O.
Ricken
, and
R. C.
J. Stutzki
, “
Astrophysical detection of the helium hydride ion HeH +
,”
Nature
568
,
357
359
(
2019
).
2.
A.
Ren
,
A.
Zahid
,
D.
Fan
,
X.
Yang
,
M. A.
Imran
,
A.
Alomainy
, and
Q. H.
Abbasi
, “
State-of-the-art in terahertz sensing for food and water security—A comprehensive review
,”
Trends Food Sci. Technol.
85
,
241
251
(
2019
).
3.
A.
Cuisset
,
F.
Hindle
,
G.
Mouret
,
R.
Bocquet
,
J.
Bruckhuisen
,
J.
Decker
,
A.
Pienkina
,
C.
Bray
,
E.
Fertein
, and
V.
Boudon
, “
Terahertz rotational spectroscopy of greenhouse gases using long interaction path-lengths
,”
Appl. Sci.
11
,
1229
(
2021
).
4.
A. G.
Davies
,
A. D.
Burnett
,
W.
Fan
,
E. H.
Linfield
, and
J. E.
Cunningham
, “
Terahertz spectroscopy of explosives and drugs
,”
Mater. Today
11
,
18
26
(
2008
).
5.
D. M.
Mittleman
, “
Twenty years of terahertz imaging
,”
Opt. Express
26
,
9417
9431
(
2018
).
6.
J. C.
Pearson
,
B. J.
Drouin
, and
S.
Yu
, “
Instrumentation for THz spectroscopy in the laboratory and in space
,”
IEEE J. Microwaves
1
,
43
54
(
2021
).
7.
A.
Pagies
,
G.
Ducournau
, and
J.-F.
Lampin
, “
Low-threshold terahertz molecular laser optically pumped by a quantum cascade laser
,”
APL Photonics
1
,
031302
(
2016
).
8.
M.
Wienold
,
A.
Zubairova
, and
H.-W.
Hübers
, “
Laser emission at 4.5 THz from 15NH3 and a mid-infrared quantum-cascade laser as a pump source
,”
Opt. Express
28
,
23114
(
2020
).
9.
P.
Chevalier
,
A.
Amirzhan
,
F.
Wang
,
M.
Piccardo
,
S. G.
Johnson
,
F.
Capasso
, and
H. O.
Everitt
, “
Widely tunable compact terahertz gas lasers
,”
Science
366
,
856
860
(
2019
).
10.
A.
Amirzhan
,
P.
Chevalier
,
J.
Rowlette
,
H. T.
Stinson
,
M.
Pushkarsky
,
T.
Day
,
H. O.
Everitt
, and
F.
Capasso
, “
A quantum cascade laser-pumped molecular laser tunable over 1 THz
,”
APL Photonics
7
,
016107
(
2022
).
11.
J.-F.
Lampin
,
A.
Pagies
,
G.
Santarelli
,
J.
Hesler
,
W.
Hansel
,
R.
Holzwarth
, and
S.
Barbieri
, “
Quantum cascade laser-pumped terahertz molecular lasers: Frequency noise and phase-locking using a 1560 nm frequency comb
,”
Opt. Express
28
,
2091
2106
(
2020
).
12.
M.-H.
Mammez
,
Z.
Buchanan
,
O.
Pirali
,
M.-A.
Martin-Drumel
,
J.
Turut
,
G.
Ducournau
,
S.
Eliet
,
F.
Hindle
,
S.
Barbieri
,
P.
Roy
,
G.
Mouret
, and
J.-F.
Lampin
, “
Optically pumped terahertz molecular laser: Gain factor and validation up to 5.5 THz
,”
Adv. Photonics Res.
3
,
2100263
(
2022
).
13.
T. S.
Hearne
,
M.-H.
Mammez
,
D.
Mammez
,
M.-A.
Martin-Drumel
,
P.
Roy
,
O.
Pirali
,
S.
Eliet
,
S.
Barbieri
,
F.
Hindle
,
G.
Mouret
, and
J.-F.
Lampin
, “
Unlocking synchrotron sources for THz spectroscopy at sub-MHz resolution
,”
Opt. Express
30
,
7372
(
2022
).
14.
J.-F.
Lampin
,
O.
Pirali
,
Z. S.
Buchanan
,
S.
Eliet
,
M.-A.
Martin-Drumel
,
J.
Turut
,
P.
Roy
,
F.
Hindle
, and
G.
Mouret
, “
Broadband terahertz heterodyne spectrometer exploiting synchrotron radiation at megahertz resolution
,”
Opt. Lett.
44
,
4985
(
2019
).
15.
P.
Chevalier
,
A.
Amirzhan
,
J.
Rowlette
,
H. T.
Stinson
,
M.
Pushkarsky
,
T.
Day
,
F.
Capasso
, and
H. O.
Everitt
, “
Multi-line lasing in the broadly tunable ammonia quantum cascade laser pumped molecular laser
,”
Appl. Phys. Lett.
120
,
081108
(
2022
).
16.
See https://hitran.org/ for HITRAN.
17.
A.
Crocker
,
H.
Gebbie
,
M.
Kimmitt
, and
L.
Mathias
, “
Stimulated emission in the far infrared
,”
Nature
201
,
250
251
(
1964
).
18.
P.
Belland
, “
Waveguide CW 118.6  μm H 2O laser
,”
Appl. Phys. B
27
,
123
128
(
1982
).
19.
Y. S.
Domnin
,
V. M.
Tatarenkov
, and
P. S.
Shumyatskii
, “
D2O laser for absolute frequency measurements
,”
Sov. J. Quantum Electron.
5
,
991
993
(
1975
).
20.
W.
Benedict
,
M.
Pollack
, and
W.
Tomlinson
, “
The water-vapor laser
,”
IEEE J. Quantum Electron.
5
,
108
124
(
1969
).
21.
T.
Chang
and
T.
Bridges
, “
Laser action at 452, 496, and 541  μm in optically pumped CH 3F
,”
Opt. Commun.
1
,
423
426
(
1970
).
22.
F.
Keilmann
,
R. L.
Sheffield
,
J. R. R.
Leite
,
M. S.
Feld
, and
A.
Javan
, “
Optical pumping and tunable laser spectroscopy of the ν 2 band of D 2O
,”
Appl. Phys. Lett.
26
,
19
22
(
1975
).
23.
M.
Nagatsu
,
Y.
Tsubouchi
,
N.
Takada
,
K.
Sasaki
,
T.
Tsukishima
,
T.
Okada
,
S.
Okajima
,
K.
Sato
,
S.
Sudo
, and
Y.
Tsunawaki
, “
Experimental study of the spectral characteristics of a high power, pulsed D2O laser for application to plasma diagnostics
,”
Jpn. J. Appl. Phys.
31
,
3873
(
1992
).
24.
K.
Sasaki
,
T.
Okada
,
S.
Okajima
,
Y.
Tsunawaki
,
K.
Kondo
, and
H.
Arimoto
, “
Injection seeding for single-mode operation in an optically pumped high-power D2O laser
,”
Int. J. Infrared Millimeter Waves
16
,
2133
2146
(
1995
).
25.
K.
Sasaki
,
N.
Takada
,
O.
Takahashi
,
M.
Nagatsu
,
T.
Tsukishima
,
T.
Okada
,
S.
Okajima
,
Y.
Tsunawaki
,
S.
Sudo
,
K. N.
Sato
,
K.
Kondo
,
H.
Arimoto
, and
K.-I.
Sato
, “
Spectral narrowing of an optically pumped high-power D2O laser using the oscillator-amplifier system
,”
J. Appl. Phys.
77
,
1378
1384
(
1995
).
26.
G.
Dodel
and
N.
Douglas
, “
Investigation of D2O-laser emission at 50, 66, 83, 111, and 116  μm
,”
IEEE J. Quantum Electron.
18
,
1294
1301
(
1982
).
27.
L.
Geng
,
Y.
Qu
,
W.
Zhao
, and
J.
Du
, “
High efficient, intense and compact pulsed D2O terahertz laser pumped with a TEA CO2 laser
,”
J. Infrared, Millimeter, Terahertz Waves
34
,
780
786
(
2013
).
28.
Reviews of Infrared and Millimeter Waves, edited by K. J. Button, M. Inguscio, and F. Strumia (Springer US, Boston, MA, 1984), Vol. 2.
29.
E. J.
Danielewicz
et al., “
New cw far-infrared D2O, 12CH3F and 14NH3 laser lines
,”
Opt. Commun.
27
,
98
100
(
1978
).
30.
E.
Schneider
et al., “
Far-infrared continuous-wave laser emission from H 2O and from NH 3 optically pumped by CO laser
,”
Opt. Lett.
21
,
1038
(
1996
).
31.
W.
Demtröder
,
Atoms, Molecules and Photons
(
Springer
,
Berlin
,
2010
).
32.
S.
Brünken
,
H. S. P.
Müller
,
C.
Endres
,
F.
Lewen
,
T.
Giesen
,
B.
Drouin
,
J. C.
Pearson
, and
H.
Mäder
, “
High resolution rotational spectroscopy on D2O up to 2.7 THz in its ground and first excited vibrational bending states
,”
Phys. Chem. Chem. Phys.
9
,
2103
2112
(
2007
).
33.
C.
Camy-Peyret
,
G.
Guelachvili
, and
J. W. C.
Johns
, “
Line positions and intensities in the ν2 band of D2O improved pumped D2O laser frequencies
,”
Int. J. Infrared Millimeter Waves
6
,
199
233
(
1985
).
34.
Y. S.
Domnin
,
V. M.
Tatarenkov
, and
P. S.
Shumyatskiĭ
, “
Phase locking of a D2O laser to a frequency standard
,”
Sov. J. Quantum Electron.
10
,
116
117
(
1980
).
You do not currently have access to this content.